
On the Stack Encoding and Twig Joins

Abstract The twig join, which is used to find all occurrences of a twig pattern in an XML database, is a core oper-
ation for XML query processing. A great many strategies for handling this problem have been proposed and can be
roughly classified into two groups. The first group decomposes a twig pattern (a small tree) into a set of binary re-
laionships between pairs of nodes, such as parent-child and ancestor-descendant relations; and transforms a tree
matching problem into a series of simple relation look-ups. The second group decomposes a twig pattern into a set
of paths. Among all this kind of methods, the approach based on the so-called stack encoding is very interesting,
which can represent in linear space a potentially exponential (in the number of query nodes) number of matching
paths. However, the available processes for generating such compressed paths suffer substantial redundancy and
can be greatly improved. In this paper, we analyze this method and show that the time complexities of path gener-
ation in its two main procedures: PathStack and TwigStack can be reduced from O(m2⋅n) to O(m⋅n), where m and n
are the sizes of the query tree and document tree, respectively.
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1. Introduction
In XML [13, 14], data is represented as a tree; associ-
ated with each node of the tree is an element type from
a finite alphabet ∑. The children of a node are ordered
from left to right, and represent the content (i.e., list of
subelements) of that element. 
To abstract from existing query languages for XML
(e.g. XPath [13], XQuery [14], XML-QL [5], and
Quilt [3, 4]), we express queries as tree patterns where
nodes are types from ∑ ∪ {*} (* is a wildcard, match-
ing any node type) and string values, and edges are
parent-child or ancestor-descendant relationships. As
an example, consider the query tree shown in Fig. 1,
which asks for any node of type b that is a child of
some node of type a. In addition, the b-node is the par-
ent of some c-node and some e-node, as well as an an-
cestor of some d-node. The query corresponds to the
following XPath expression:

a[b[c and //d]]/b[c and e//d]. 

In this figure, there are two kinds of edges: child edges
(c-edges) for parent-child relationships, and descen-
dant edges (d-edges) for ancestor-descendant relation-
ships. A c-edges from node v to node u is denoted by
v →  u in the text, and represented by a single arc; u is

Fig. 1. A query tree
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called a c-child of v. A d-edge is denoted v ⇒  u in the
text, and represented by a double arc; u is called a d-
child of v.
Finding all occurrences of a twig pattern in a database
is a core operation in XML query processing, both in
relational implementation of XML databases, and in
native XML databases.
Recently this problem has received much attention in
database research community and different strategies
have been proposed [1, 2, 6, 7, 8, 9, 10, 11, 12, 15].
Most of them (for example, [1, 6, 7, 8, 9, 10, 15]) typi-
cally decompose a twig pattern into a set of binary re-
lationships between pairs of nodes, such as parent-child
and ancestor-descendant relations; and the sizes of in-
termediate relations tend to be very large, even when
the input and final result sizes are much more manage-
able. Another kind of strategies bases on path decom-
position, such as those discussed in [2, 11, 12]. In [11,
12], all the possible paths of an XML document are ex-
plicitly stored and indexed using B+-trees as well as
trie structures. In [2], a document is also decomposed,
but dynamically depending on the given queries. This
method is of special interest since the decomposed
paths are not simply stored but compressed by using
the so-called stack encoding. Although the idea of
compressing intermediate results is very attractive, the
process suggested in [2] for producing compact paths is
not so efficient and can be substantially improved.
In this paper, we analyze the method described in [2]
and show its redundancy. In addition, two new algo-
rithms are presented, which improve the two main pro-



cedures of this method: PathStack and TwigStack, by
one order of magnitude. 
The remainder of the paper is organized as follows. In
Section 2, we analyze the first procedure PathStack
proposed in [2], and present a new algorithm to im-
prove its time complexity. In Section 3, we analyze the
second procedure TwigStack discussed in [2], and
show a way to reduce the time for path generation. In
Section 4, we extend the method discussed in Section
3 to general cases. Finally, a short conclusion is set
forth in Section 5.

2. Refined pathstack
In this section, we discuss the first procedure Path-
Stack given in [2], which is used to evaluate a sort of
simple queries that can be represented as a single path
containing only d-edges. First, we describe the Path-
Stack algorithm in 2.1. Then, we discuss how this algo-
rithm can be improved in 2.2.

2.1 Description of PathStack
Let T be a document tree. We associate each node v in
T with a quadruple (DocId, LeftPos, RightPos, Level-
Num), denoted as α(v), where DocId is the document
identifier; LeftPos and RightPos are generated by
counting word numbers from the beginning of the doc-
ument until the start and end of the element, respective-
ly; and LevelNum is the nesting depth of the element
in the document. (See Fig. 2(a) for illustration.) By us-
ing such a data structure, the structural relationship be-
tween the nodes in an XML database can be
determined easily [2]:
(i) ancestor-descendant: a node v1 associated with (d1,

l1, r1, ln1) is an ancestor of another node v2 with (d2,
l2, r2, ln2) iff d1 = d2, l1 < l2, and r1 > r2.

(ii)parent-child: a node v1 associated with (d1, l1, r1,
ln1) is the parent of another node v2 with (d2, l2, r2,
ln2) iff d1 = d2, l1 < l2, r1 > r2, and ln1 = ln2 + 1.

(iii)from left to right: a node v1 associated with (d1, l1,
r1, ln1) is to the left of another node v2 with (d2, l2,
r2, ln2) iff d1 = d2, r1 < l2.

Assume that q = q1 ⇒  q2 ... ⇒  qm-1 ⇒  qm be a path
query. We associate each qi (1 ≤ i ≤ m) with a data
stream L(qi), which contains the quadruples of the da-
tabase nodes that match qi as illustrated in Fig. 2(b).
Such a list can be established by using an efficient ac-
cess mechanism, such as an index structure. In addi-
tion, the quadruples in a list are sorted by their (DocId,
LeftPos) values.
The main idea of PathStack is to compress the match-
ing paths using a set of stacks. Each of them is attached
to a qi (1 ≤ i ≤ m), denoted as S(qi), with the following
properties:
(i) Each entry in S(qi) is a pair: (α, a pointer to an entry

in S(parent(qi)), where α ∈  L(qi) is a quadruple for
some node v.

(ii)The entries in S(qi) (from bottom to top) are guaran-
teed to lie on a root-to-leaf path in a document tree.
(iii)The set of stacks contain a compact encoding of

partial and total answers to the query path.
To see how it works, let’s have a look at the following
example. 
Example 1. In Fig. 2(a), we show a simple document T
and a simple query q.

Obviously, T has four subpaths that match q, as shown
in Fig. 3(a). By using the stack encoding, they can be
stored in a way as shown in Fig. 3(b). 

First, we notice that the answer [v3, v4, v5, v6] is encod-
ed since v6 points to v5, v5 to v4, and v4 to v3. Also, the
answer [v1, v4, v5, v6] is encoded since v1 is below v3 on
the stack S(q1). For the same reason, [v1, v2, v5, v6] is an
answer since v2 is below v4 on the stack S(q2) and has a
pointer to v1. Finally, since v3 is below v5 on the stack
S(q3) and has a pointer to v2, [v1, v2, v3, v6] is also an
answer. However, [v3, v2, v5, v6] is not an answer since
v3 is above v1 on S(q2), to which v2 points.
In the following, we will first describe PathStack given
in [2] and analyze its time complexity. Then, we de-
scribe a new algorithm in the next subsection, which
improves PathStack by one order of magnitude.
In PathStack, the following operations are used.

next(L(qi)): return the next element in L(qi). Initially,
the pointer is to the position before the first element in
L(qi).
advance(L(qi)): move to the next element in L(qi);
LeftPos(α): return the LeftPost of α;
RightPos(α): return the RightPost of α.

Algorithm PathStack(q)
1. while ¬ end(q) do
2. {qmin ← getMinSource(q);
3. for each qi in q do 
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4. while (¬ empty(S(qi) ∧  (RightPos(top(S(qi))) < Left-
Pos(L(qmin)) do pop(S(qi));

5. moveStreamToStack(L(qmin), S(qmin), pointer to top(S(par-
ent(qmin))));

6. if (qmin is a leaf node) then
7. {showSolutions(S(qmin), 1); pop(S(qmin));}
8. }

Function end(q)
if for any leaf node q’, L(q’) is empty
then return true
else return false;

Function getMinSource(q)
return qi in q such that LeftPos(next(L(qi))) is minimal.

Procedure moveStreamToStack(L, S, p)
1. push(S, next(L), p);
2. advance(L);

The algorithm PathStack repeatedly construct stack
encodings of partial and total answers by iterating
through the streams associated with the nodes in q,
which are in the order of sorted LeftPos values. So the
nodes in T are checked in the order of non-decreasing
LeftPos values. This is done by executing line 2, which
invokes the procedure getMinSources(q) to identify
the stream containing the next node to be processed.
By executing lines 3 -5, some partial answers are re-
moved from the corresponding stacks, which cannot
be extended to total answers in terms of the ancestor-
descendant relationships of nodes. Line 6 arguments
the partial answers encoded in the stacks with new
stream nodes. Whenever a node qmin is pushed onto
the stack S(qmin) and that node is the leaf of the path
query, the stack must have an encoding of some total
answers if any. In this case, the algorithm showSolu-
tions will be invoked to output these answers. Each of
them is represented as an n-tuple that is in sorted leaf-
to-root of the query path [2].

Procedure showSolutions(a, b)
1. index[a] ← b;
2. if (a = 1) then
3. output(S(qn).index[n], ..., S(q1).index[1])
4. else
5. {for i = 1 to S(qa).index[a].pointer-to-parent do
6. showSolution(a - 1, i);}

The above algorithm expands the paths from the corre-
sponding stack encodings. Assume that the nodes in
the query path is numbered from top to bottom. We
maintain a global array index[1..n], in which ith entry
is a pointer to the position in S(qi) that we are interest-
ed in for the current solution, where the bottom of S(qi)
is position 1.
The time complexity of PathStack can be estimated as
follows. Let ni be the size of L(qi). Then, the main

while-loop will be iterated times since the termi-

nation condition of this while-loop is when all the ele-
ments in L(qm) are exhausted. In each iteration, the top

ni

i 1=

m

∑

elements of m stacks are checked. Let δijk be the number
of elements removed from S(qk) in the (i, j)-th iteration.
Then, the worst-case cost is bounded by

O( )

= O( ) + O( )

= O( ) + O(m⋅n) = O(m2⋅n).

Here we should remark that  cannot be

larger than m⋅n since at most m⋅n elements may be
pushed on to the stacks.

2.2 Removing redundancy from PathStack
An observation shows that each time when getMin-
Source(q) is carried out, a database node is visited and
all the database nodes are accessed in the order of non-
decreasing LeftPos values. So we can rearrange the
computation as below.
Definition 1 (matching subtrees) A matching subtree T’
of T w.r.t a query path q (containing only d-edges) is a
tree, in which each node matching the predicate at a
node in q and there is an edge from node a to node b iff
there exists a path p from a to b in T and any other node
on p does not match any node predicate in q.

Example 2. Consider the document tree T shown in Fig.
4(a). With respect to the query path q shown in Fig. 2(a),
it has a matching subtree as shown in Fig. 4(b). 

The main idea of our algorithm is to explore T’ top-
down in the depth-first searching manner. To enable the
operations that are conducted by PathStack each time
when a node in q is chosen, we change the data structure
as follows.
Instead of a list attached with each qi in q, we associate
v in T’ with a list of nodes from q, denoted as L(v), such
that v satisfies the predicate of each node in the list. See
Fig. 4(c) for illustration.

1 δijk+( )

k 1=

m

∑
j 1=

ni

∑
i 1=

m

∑

1

k 1=

m

∑
j 1=

ni

∑
i 1=

m

∑ δijk

k 1=

m

∑
j 1=

ni

∑
i 1=

m

∑

m n⋅ i

i 1=

m

∑

δijk

k 1=

m

∑
j 1=

ni

∑
i 1=

m

∑

v1

v2

v5

v6

v7

A

B

A

B

A

T:

v8C

v3D

v4C

v1

v2

v5

v6

v7

A

B

A

B

A

T’:

v8C

v4C

- {q1, q3}

- {q1, q3}

- {q1, q3}

- {q2}

- {q2}

- {q4}

- {q4}

T’:

v1

v2

v5

v6

v7

A

B

A

B

A

v8C

v4C

(a) (b) (c)

Fig. 4. Illustration for matching subtrees



Based on such a data structure, the following algo-
rithm can be easily implemented.

Algorithm RefindPathStack
1.stack ← root of T’;
2.while ¬ empty(stack) do
3.{ v ← pop(stack);
4. for each qi in q do 
5. while (¬ empty(S(qi) ∧  (RightPos(top(S(qi))) < Left-

Pos(α(v)) do pop(S(qi));

6. for each qj in L(v) do 
7. {push(S(qi), α(v));
8. establish pointer to top(S(parent(qi)));
9. if qj is a leaf node
10. then {call showSolutions(S(qi), 1); pop(S(qi));
12. }
13. push all the children of v onto stack;
14.}

Example 3. When we apply our method to find all the
paths in T, which match q, we will first generate the
matching subtree T’ of T and associate each v in T with
a list as shown in Fig. 4(c). Then, we run RefindPath-
Stack over T’ and q. During this process, T’ will be
searched top-down as shown below.
step 1:v1 is visited; and α(v1) will be pushed onto

S(q1) and S(q3), respectively, as shown in Fig.
5(a).

step 2:v2 is visited; and α(v2) will be pushed onto
S(q2). Meanwhile, a pointer to the top of the
stack of q2’s parent will be established as shown
in Fig. 5(b).

step 3:v4 is visited; and α(v4) will be pushed onto
S(q4). Also, a pointer to the top of the stack of
q4’s parent will be established as shown in Fig.
5(c).

step 4:v5 is visited. Since RightPos(top(S(q4))) = 4 <
LeftPos(α(v5)) = 6, v4 is popped out from S(q4).
After that, α(v5)) is pushed onto S(q1) and S(q3),
respectively, as shown in Fig.5(d).

step 5:v6 is visited. α(v6) will be pushed onto S(q2),
and a pointer as shown in Fig. 5(e) will be cre-
ated.

step 6:v7 is visited. and α(v7) will be pushed onto S(q1)
and S(q3), respectively. In addition, a pointer to
its parent is generated as shown in Fig. 5(f).

step 7:v8 is visited.  α(v8) will be pushed onto S(q4)
and a pointer is established as shown in Fig.
5(g).

During the execution of RefindPathStack, each v in T’
is accessed only once. Moreover, each time when a v
is visited, the top elements of m stacks are checked and
at most m nodes are pushed onto the stacks. Let δij de-
note the number of elements removed from S(qj) in the
i-th iteration. Therefore, the total cost is bounded by
O( )

= O( ) + 

= O(m⋅n).

3. Refined twigstack
From the previous section, we can see that the elimina-
tion of PathStack’s redundancy is relatively straightfor-
ward. But it is more challenging to remove redundancy
from TwigStack [2], which is used to handle more com-
plicated cases that the query is a non-trivial tree, but
containing only d-edges. As in Section 2, we will first
describe TwigSatck and analyze its time complexity in
3.1. Then, in 3.2, we give a new algorithm, which sub-
stantially improves TwigStack.

3.1 Description of TwigStack
Algorithm TwigStack operates in two phases. In the first
phase, all paths matching individual query root-to-leaf
paths are produced. In the second phase, these match-
ing paths are merge-joined to create the answers to the
query twig pattern.
In order to generate all the matching paths, TwigStack
uses the same data structures as PathStack, but work in
a quite different way. 

Algorithm TwigStack(q)

(*phase 1*)
1. while ¬ end(q) do 
2.{ qact ← getNext(q);
3. if (qact is not the root) then
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4. cleanStack(S(parent(qact)), LeftPos(next(L(qact)));
5. if (qact is the root of q) ∨ ¬ empty(S(parent(qact)))
6. then 
7. {cleanStack(S(qact), LeftPos(next(L(qact)));
8. moveStreamToStack(L(qact), S(qact), pointer to 

top(S(qact)));
9. if (qact is a leaf node) then
10. {showSolutions(S(qact), 1); pop(S(qact));}
11. }
12. else advance(L(qact));
13.}
(*phase 2*)
14. mergeAllPathSolutions();

Function getNext(q)
1. if (q is a leaf node) then return q;
2. let q1, ..., qk be the children of q;
3. for i = 1 to k do
4. {ni ← getNext(qi);
5. if (ni ≠ qi) then return ni;}
6. nmin ← min{LeftPos(n1), ..., LeftPos(nk)};
7. nmax ← max{LeftPos(n1), ..., LeftPos(nk)};
8. while (RightPost(next(L(q)) < LeftPost(next(L(nmax)) do
9. advance(L(q));
10. if (LeftPost(next(L(q)) < LeftPost(next(L(nmin)) then return q;
11. else return nmin;

Procedure cleanStack(S, actL)
1. while (¬ empty(S) ∧ (RightPos(top(S) < actL) do
2. pop(S);

The above algorithm is a more complicated process
than PathStack. First, getNext is quite different from
getMinSource, by which a qi from q is chosen iff the
following two conditions are satisfied:
(i) Let , ..., be the children of qi. Let v be the next

node in L(qi) to be processed. Then, v has a descen-
dant u such that α(u) in L( ) for each  (1 ≤ j ≤ k).

(ii)Each u recursively satisfies the first property.

In this way, each solution to each individual query
root-to-leaf path is guaranteed to be merge-joinable
with at least one solution to each of other root-to-leaf
paths. Therefore, the dominate cost of the first phase is
the execution time of getNext.
Let ni be the size of L(qi). Then, the main while-loop

in TwigStack will be iterated times since the ter-

mination condition of this while-loop is when all the
elements in all L(qleaf)’s are exhausted. In each itera-
tion, the procedure getNext will be invoked and all the
nodes in the query tree will be accessed. Let λijk be the
number of elements in L(qk) checked when node qk is
visited during the (i, j)-th execution of getNext. Then,
the worst-case cost is bounded by

qi1
qik

qij
qij
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= O( ) + O( )

= O( ) + O(m⋅n) = O(m2⋅n).

3.2 Removing redundancy from TwigStack
Now we begin to discuss how the redundancy of Twig-
Stack can be removed. As with TwigStack, we will asso-
ciate each node qi in q with a data stream L(qi) the
following conditions:
(i) For each v ∈  L(qi), v matches the predicate at qi.
(ii)Let , ...,  be the children of qi. v has a descen-

dant v’ matching  for j ∈ {1, ..., k}.

(iii)Each of the nodes v’ recursively satisfies (ii).

Obviously, these three conditions correspond to the two
properties given in the previous subsection, for any
node going onto a stack. There is not anything new.
However, not like getNext in TwigStack, which chooses
nodes from q to handle and in fact each time finds a next
v in T’ to be put in some stack (by multiple executions),
we generate all L(qi)’s in one scan, which enables us to
avoid a great number of repeated accesses to query
nodes.
For this purpose, we maintain two m × n (m = |q|, n =
|T’|) matrices.
1. The nodes in both q and T’ are numbered in pos-

torder, and the nodes are then referred to by their
postorder numbers.

2. In the first matrix, each entry cij (i ∈  {1, ..., m}, j ∈
{1, ..., n}) has value 0 or 1. If cij = 1, it indicates
that i ∈  L(j) and for each child of i, j has a descen-
dant satisfying the predicate at it. Otherwise, cij =
0. This matrix is denoted by c(q, T’).

3. In the second matrix, each entry dij (i ∈  {1, ..., m},
j ∈  {1, ..., n}) is defined as follows. If j has a
descendant j’ such that cij’ = 1, then dij = 1; other-
wise dij = 0. This matrix is denoted by d(q, T’).

The following algorithm can be used to generate the
values for these two matrices.

Initially, cij = 0 and dij = 0 for all i and j. During the
execution of the algorithm, the values of cij’s will be
changed according to conditions (i) and (ii) described
above; and dij’s will be changed to record whether a
node j in T’ has a descendant j’ that matches a certain
node i in q.
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Algorithm matrixGeneration(T’, q)

Input: tree T’ (with nodes 1, ..., n) and tree q (with nodes 1, ..., m)
Output: c(q, T’) with values created.
begin
1. for u := 1, ..., m do {
2. for v := 1, ..., n do
3. {if v satisfies the predicate at u then
4. let u1, ..., uk be the children of u;

5. if ∧ ... ∧  = 1 then cuv ← 1;

6. }

7. let v1, v2, ..., vh be the nodes such that  = 1 (1 ≤ p ≤ h);

8. let {w1, ..., wr} be a set such that each node in it is an ancestor

of some vp (1 ≤ p ≤ h). Set  = 1 for each wl (1 ≤ l ≤ r).

9. }
end

To see how the above algorithm works, we should first
notice that both T’ and q are both postorder-numbered.
Therefore, the algorithm proceeds in a bottom-up way
(see line 1 and 2). For any node u in q and any node v
in T’, if v satisfies the predicate at u, we will check
each child ui of u to see whether there exists a descen-
dant of v that matches ui (see line 5). If it is the case,
cuv will be set to 1.
In line 7 and 8, we change dij’s according to the newly
changed cij’s. 

Example 3. As an example, consider the trees shown
in Fig. 6. The nodes in them are postorder numbered. 

When we apply the algorithm to these two trees, c(q,
T) and d(q, T) will be created and changed in the way
as illustrated in Fig. 7, in which each step corresponds
to an execution of the outmost for-loop.
In step 1, we show the values in c(q, T) and d(q, T)
after node 1 in q is checked against every node in T.
Since node 1 in q matches node 1, 2 and 4 in T, c11, c12,
and c14 are all set to 1. Meanwhile, for all those nodes
that are an ancestor of 1, 2, or 4 in T, the corresponding
entries in d(q, T) will be changed. So we have all d11,
d12, d13, d14, and d16 set to 1 (see line 7 and 8). 
In step 2, the algorithm generates the matrix entries for
node 2 in q, which is done in the same way as for node
1 in q.
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Fig. 6. Labeled trees and postorder numbering 
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In step 3, node 3 in q will be checked against every
node in T, but matches only node 3 and 5 in T. Since it
is an internal node, its children will be further checked.
For node 3 in T, it is done by checking d23, which is
equal to 1. So node 3 in T matches node 3 in q. For
node 5 in T, since d35 is 0, it does not match node 3 in q.
In step 4, since node 6 in T matches node 4 in q and
both d16 and d36 are equal to 1, c16 is set to 1 (d16 is

then set to 1 by executing line 7 and 8). 

Proposition 1. Algorithm matrixGeneration(T, q) com-
putes the values in c(q, T) and d(q, T) correctly.
Proof. The proposition can be proved by induction on
the sum of the heights of T and q.
Proposition 2. Algorithm matrixGeneration(T, q)
requires O(n⋅m) time and space, where n = |T| and m =
|q|.
Proof. During the whole process, against each node u in
q, all the nodes v in T is checked and for each v all its
children will be examined. Therefore, this part of time
is bounded by

O( ) =  O( ) = O(n⋅m), 

where dv represents the outdegree of node v in T. 
In addition, after each u in q is checked, for all those
nodes in T, which are an ancestor of some node that
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matches u, the corresponding matrix entries in d(q, T)
will be established. But this operation needs only O(n)
time if we proceeds as follows. Each time when we
search T bottom-up from a node v that matches u to
find all its ancestors, we mark each node encountered
and stop whenever we meet such a mark (made by a
previous searching). So at most O(n) nodes will be
checked and the total time of this part of operations is
bounded by O(n⋅m).
Obviously, to maintain c(q, T) and d(q, T), we need
O(n⋅m) space.
In terms of the matrix c(q, T), it is an easy task to create
L(qi) for each qi in q as illustrated in Fig. 8(a).

Fig. 8(b) is the same as Fig. 8(a). But in this figure we
use node names in L(qi) instead of their postorder num-
bers.

Concerning L(qi), we should pay attention to the fol-
lowing:

(1) The nodes (represented by their quadruple) in L(qi)
are sorted by their (DocId, LeftPos) values (not ac-
cording to their postorder numbers).

(2) Each node in L(qi) satisfies the condition (i) and (ii)
given in 3.1.

Using such a data structure, the algorithm TwigStack
can be substantially improved. As with RefinedPath-
Stack, we use a stack to control the searching of q in the
depth-first fashion. Each entry in the stack is a pair (qi,
vj), where qi ∈ q and vj ∈ T’. 

Finally, we notice that getNext( ) is not used since all the
values to be produced by executing getNext( ) are pre-
calculated and incorporated into L(qi)’s.

Algorithm RefinedTwigStack(q)

(*phase 1*)
1.Repeat the following until all L(qi) become empty;
2.{let LeftPos(qi) be the least such that ¬ empty(L(qi));
3. push(stack, (qi, next(L(qi))); advance(L(qi));
4. while ¬ empty(stack) do
5. {(u, v) ← pop(stack);
6. if (u is not the root) then
7. cleanStack(S(parent(u)), LeftPos(v));
8. if (u is the root of q) ∨ ¬ empty(S(parent(u)))
9. then 
10. {cleanStack(S(u), LeftPos(v));
11. push(S(u), v, pointer to top(S(parent(u)));
12. if (u is a leaf node) then
13. {showSolutions(S(u), 1); pop(S(u));}

Fig. 8. Illustration for L(qi)’s 
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14. }
15. else advance(L(u));
16. let q1, ..., ql be the children of u;
17. for j = l to 1 do
18. {while next(L(qj) is not a descendant of v do adavance(L(qj);
19. push(stack, (qj, next(L(qj)));}
20. }}
(*phase 2*)
21. mergeAllPathSolutions();

Example 4. Continue with Example 3.
By using our method, we will first generate L(qi) for
each qi as shown in Fig. 8(b). Then, we will search the
twig pattern q as follows.
step 1: At the very beginning, the node q1 has the least

LeftPos value and L(q1) is not empty. Push (q1,
v1) into stack.

step 2: In the following while-loop, the whole query
tree will be traversed.
When we meet q2, which is a leaf node, we have
a configuration as shown in Fig. 9, which con-
tains the first matching path: v2 → v1. By using
showSolution( ), we can store it in a tuple.

step 3: When we meet q3, which is an internal node, the
stacks will be changed as shown in Fig. 10. 

step 4: When we meet another leaf node q4, we will get
the second matching path: v5 → v4 → v1, stored
in stacks as shown in Fig. 11.

step 5: Now stack (used to control the searching of q) is
empty. We will try to find another node (in q)
with the least LeftPos value and a non-empty
list. It is q2. In L(q2), we have two elements left:
{v3, v5}. Push (q2, v3) into stack.

step 6: In the while-loop, q2 is accessed and the stack
configuration is changed as shown in Fig. 12,
from which we can take the third matching path:

v1v2

S(q4) S(q3) S(q2) S(q1)

Fig. 9. The first matching path 
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Fig. 10. Illustartion for stack changes 
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Fig. 11. The second matching path 
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v3 → v1. 

step 7: Since the lists associated with all the other nodes
are empty now, stack becomes empty once
again. As in step 5, we will try to find a node (in
q) with the least LeftPos value and a non-empty
list. It is q2 once again. For it, we have L(q2) =
{v5}. Proceeding as above, the stacks will be
changed as shown in Fig. 13. From this, the
fourth matching path: v5 → v1 can be obtained.

The above algorithm works almost in the same way as
TwigStack. The only difference is that in TwigStack, get-
Next is executed multiple times while in RefinedTwig-
Stack, getNext is replaced with matrixGeneration,
which is performed only once.
The time complexity of RefinedTwigStack is easy to an-
alyze. In the whole process, each node v in a L(qi) is ac-
cessed only once. So the total cost is bounded by

O( ) = O(m⋅n).

4. General cases
The method discussed in Section 3 can be easily ex-
tended to handle general cases that a query tree contains
both c-edges and d-edges. For this purpose, we define a
third matrix p(q, T) as follows.

An entry pij = 1 indicates that there exists some
child k of j, which ‘matches’ i, i.e., cik = 1; other-
wise, pij = 0.

Accordingly, the algorithm matrixGeneration should
be slightly changed so that the manipulation of p(q, T)
is involved.
Algorithm generalMatrixGeneration(T, q)
Input: tree T (with nodes 1, ..., n) and tree q (with
nodes 1, ..., m)
Output: c(q, T) with values created.
begin
1. for u := 1, ..., m do {
2. for v := 1, ..., n do
3. {if v satisfies the predicate at u then

v1v2

S(q4) S(q3) S(q2) S(q1)

Fig. 12. The third matching path 
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i 1=

m

∑

4. let u1, ..., uk be the c-children of u;

5. let u1’, ..., ug’ be the d-children of u;

5. if ∧ ... ∧  = 1 and ∧ ... ∧  = 1

6. then cuv ← 1;

7. }
8. let v1, v2, ..., vh be the nodes such that  = 1 (1 ≤

p ≤ h);
9. let {w1, ..., wr} be a set such that each node in it is

an ancestor of some vp (1 ≤ p ≤ h). Set  = 1 for

each wl (1 ≤ l ≤ r).

10. let {t1, ..., ts} be a set such that each node in it is a
parent of some vp (1 ≤ p ≤ h). Set  = 1 for each tl
(1 ≤ l ≤ s).

11.}
end
Since each node u in q may have both c- and d-chil-
dren, each time when checking it against a node v in T
we need to check the corresponding entries in both d(q,
T) and p(q, T) (see line 5). In addition, besides the com-
putation of new value for some entries in d(q, T) in
each step, we need also to compute new values for the
corresponding entries in p(q, T) (see line 10).
Example 4. Consider T and q shown in Fig. 14. Espe-
cially, q is a general query tree, containing both c- and
d-edges. 

Applying the above algorithm to T and q shown in Fig.
14, we will generate three matrices as shown in Fig. 15.

Special attention should be paid to c34. It is set to 1 since
we have d14 = 1 and p24 = 1 before the calculation of this
entry is performed.
The modification to RefinedTwigStack is quite trivial:
just one line needs to be changed as below.

... ...

eu1v eukv du1 ′ v dug ′ v
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duwl

dutl

Fig. 14. A query tree containing c- and d-edges
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18. {while next(L(qj) is not a descendant of v if qj is a
d-child or next(L(qj) is not a child of v if qj is a c-
child do
adavance(L(qj);

... ...
In this way, the c-edges can be correctly handled.
Finally, from the above discussion, we can also see that
for any query tree containing both c- and d-edges, the
time complexity remains O(m⋅n).

5. Conclusion

In this paper, a new method is discussed, which sub-
stantially improves the method proposed in [2] for do-
ing twig joins that are identified as the core operation
for query evaluation in XML databases. Concretely, our
method improves the algorithm PathStack and Twig-
Stack presented in [2] from O(m2⋅n) to O(m⋅n), where m
and n are the sizes of the query tree and document tree,
respectively.
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