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String Matching in DNA Databases

Recent Progress
The core and the first step to take advantage of the new 

sequencing technology is termed as read aligning, where a read is a 
short nucleotide sequence of 30-1000 base pairs (bp) [3] generated 
by a high throughput sequencing machine made by Illumina, Roche, 
ABI/Life Technologies [4], which is in fact a sequence fragment 
fetched from a longer DNA molecule present in a sample that is 
fed into the machine (https://github.com/lh3/wgsim/). Most of 
the next-generation sequencing projects begin with a reference 
sequence which is a previously well studied, known genome. The 
process of a read aligning is to find the meaning of reads, or in other 
words, to determine their positions within a reference sequence, 
which will then be used for an effective statistical analysis.

Compared to the traditional pattern matching problems, the 
new challenge from the read aligning is its enormous volume, and 
usually millions to billions of reads need to be aligned within a same 
genome sequence. For example, to sequence a human molecule 
sample with 15X coverage, one may need to align 1.5 billion reads 
of length about 100 characters (bps). Another challenge is the so-
called inexact matching, by which we will find all the subsequences 
in a genome sequence having at most k positions different from 
a read or with k errors. Due to the polymorphisms or mutations 
among individuals or even sequencing errors, a read may disagree 
in some positions by an occurrence in the corresponding genome. 
Again, due to the huge number of reads, the existing methods 
have to be greatly modified to fit into such a new environment. 
In the past decade, a new indexing structure based on the [5] 
to speed up the matching of massive reads against different 
genome sequences, based on the so-called Burrows-Wheeler 
transformation (BWT-transformation for short) ([6] and also www. 

 
youtube.com/watch?v=4n7NPk5-lwbI) and trie structures [7] 
or automata over reads [8]. In terms of the test results reported 
in [9], an exact read matching can be done 40% faster using our 
new method than any existing strategies. The algorithm has been 
successfully used in a biological research project conducted in an 
RNA laboratory at University of Manitoba [10] (http://home.cc.um 
anitoba.ca/~xiej/). The BWT can also be utilized to expedite the 
string matching with k-mismatches [11,12]. However, this method 
cannot be easily extended to handle the massive string matching 
with k-mismatches or k-errors since when searching a trie or an 
automaton the mismatch information or the word periodicity 
cannot be directly employed in a BWT array scanning.

Literature Review
The matching of DNA sequences is just a special case of the 

general string matching problem, which has always been one of the 
main focuses in computer science. All the methods developed up to 
now can be roughly divided into two categories: exact matching and 
inexact matching. By the former, all the occurrences of a pattern 
string p in a target string s will be searched. By the latter, a best 
alignment between p and s (i.e., a correspondence with the highest 
score) is looked for in terms of a given score matrix M, which is 
established to indicate the relevance between characters [13] 
(more exactly, the meanings represented by them.)

Exact matching

Scanning-based: By this kind of algorithms, both pattern p and 
targets are scanned from left to right, but often with an auxiliary 
data structure used to speed up the search, which is typically 
constructed by a pre-processor. The first of them is the famous 
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Abstract

The recent development of next-generation sequencing has changed the way we carry out the molecular biology and genomic studies. It has 
allowed us to sequence a DNA (Deoxyribonucleic acid) sequence at a significantly increased base coverage, as well as at a much faster rate [1]. This 
facilitates building an excellent platform for a whole genome sequencing, and for a variety of sequencing-based analyses, including gene expressions, 
mapping DNA-protein interactions, whole-transcriptome sequencing, and RNA (Ribonucleic acid) splicing profiles. For example, the RNA-Seq protocol 
[2], in which processed mRNA is converted to cDNA and then sequenced, is enabling the identification of previously unknown genes and alternative 
splice variants. The whole-genome sequencing of tumour cells can uncover previously unidentified cancer-initiating mutations.
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Knuth & Morris [14] algorithm, which employs an auxiliary next-
table (for p) containing the so-called shift information (or say, 
failure function values) to indicate how far to shift the pattern 
from right to left when the current character in p fails to match the 
current character in s. Its time complexity is bounded by O(m+n), 
where m=|p| and n=|s|. The Boyer & Moore [15] approach works 
a little bit better than the Knuth & Morris [14]. In addition to the 
next-table, a skip-table (also for p) is kept. For a large alphabet and 
small pattern, the expected number of character comparisons is 
about n/m, and is O(m+n) in the worst case. Although these two 
algorithms have never been used in practice [16], they sparked a 
series of research on this problem, and are improved by different 
researchers in different ways, such as the algorithms discussed 
in [17-21]. However, the worst-case time complexity remains 
unchanged. The idea of the ‘shift information’ has also been adopted 
indifferent approaches [8,22-24] for the multiple-string matching, 
by which s is searched for the occurrences of any one of a set of k 
patterns: {p1,p2,…,pk}. Their algorithm needs only 
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where mi=|pi| (i=1,…,k). However, this algorithm cannot simply 
be adapted to an index environment due to its working fashion to 
search the characters in some by one, which is totally unsuitable 
for indexes.

Index-based: In situations where a fixed string s is to be 
searched repeatedly, it is worthwhile constructing an index over 
s, such as suffix trees, suffix arrays, and more recently the BWT-
transformation. A suffix tree is in fact a trie structure [7] over all 
the suffixes of s; and by using the Weiner’s algorithm it can be built 
in O(n) time [25]. However, in comparison with suffix trees, the 
BWT-transformation is more suitable for DNA sequences due to 
its small alphabet  since the smaller  is, the smaller space will 
be occupied by the corresponding BWT array [26]. According to a 
survey done by Li & Homer [1] on sequence alignment algorithms 
for next-generation sequencing, the average space required for 
each character is 12-17 bytes for suffix trees while only 0.5-2 byte 
for the BWT. The experiments reported in [9] also confirm this 
distinction. For example, the file size of chromosome 1 of human 
is 270Mb. But its suffix tree is of 26Gb in size while its BWT needs 
only 390Mb-1Gb for different compression rates of auxiliary arrays, 
completely handle-able on PC or laptop machines. The huge size of a 
suffix tree may greatly increase the computation time. For example, 
for the Zebra fish and Rat genomes (sizes 1,464,443,456pb, and 
2,909,701,677pb, respectively), one cannot finish the construction 
of their suffix trees within two days in a computer with 32GB RAM 
[27].

Hash-based: Intrinsically, all hash-table-based algorithms 
[28-30] extract short subsequences called ‘seeds’ from a pattern 
sequence p and create a signature (a bit string) for each of them. 
The search of a target sequence s is similar to that of the Brute 
Force searching, but rather than directly comparing the pattern at 
successive positions in s, their respective signatures are compared. 
Then, stick each matching seed together to form a complete 
alignment. Its expected time is O(m+n), but in the worst case, which 

is extremely unlikely, it takes O(m.n) time. The hash technique has 
also been extensively used in the DNA sequence research [30,31], 
and all experiments show that they are generally inferior to the 
suffix tree and the BWT index in both running time and space 
requirements [27,31,32]. 

Inexact string matching
K-mismatches and k-errors: The inexact matching [33] ranges 

from the score-based to the k-mismatching [34-36], as well as the 
k-error [37]. By the score-based method, a matrix M of size |||| 
is used to indicate the relevance between characters. The algorithm 
designed is to find the best alignment (or say, the alignment with 
the highest scores) between two given strings, which can be DNA 
sequences, protein sequences, or XML documents; and the dynamic 
programming paradigm is often utilized to solve the problem [38]. 
By the string matching with k-mismatching or k-errors, we will 
find all those subsequences q of s such that d(p,q)k, where d() is 
a distance function. When it is the Hamming distance (defined to 
be the number of different positions), the problem is known as the 
sequence matching with k mismatches. When it is the Levenshtein 
distance, the problem is known as the sequence matching with k 
errors [8,26]. By the Levenshtein distance, the distance function is 
defined as follows:

( ), 1, , 1 1, 1, ,  ,{ ( )  ,  ( ) },  i j i j i i j j i j i jd min d w p d w q d w p q− − − − +Φ= + Φ +

where di,j represents the distance between p[1..i] and q[1..j], 
pi(qj) the ith character in p(jth character in q),  an empty character, 
and w(pi,qj) the cost to transform pi into qj.

There is a bunch of algorithms proposed for this problem, 
such as for the k-mismatch; and [39,40] for the k-error. By the best 
method for the k-mismatch a time complexity  ( log )O n k k  can be 
achieved. Especially, for small k and large , the search requires a 
sublinear time on average. In addition, the BWT and suffix trees can 
also be used as indexes for this problem. For the k-error, the worst 
case time complexity is bounded by O(mn). But the expected time 
can reach O(kn) by an algorithm discussed in [33].

Don’t care symbols: As a different kind of inexact matching, 
the string matching with Don’t-Cares (or wild-cards) [41] has also 
been an active research topic for decades, by which we may have 
wild-cards in p, in s, or in both of them. A wild card matches any 
character. Due to this property, the ‘match’ relation is no longer 
transitive, which precludes straightforward adaption of the shift 
information used by Knuth & Morris [14]. All the methods proposed 
to solve this problem also require quadratic time [42]. Using a suffix 
array as the index, however, the searching time can be reduced 
to O(logn) for some patterns, which contain only a sequence of 
consecutive Don’t Cares [43].

Methodology

Massive string pattern mapping

By the massive pattern matching, we mean to find all the 
occurrences of all the patterns in a target string s. The number of 
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patterns can be millions to billions. In [9], a method is proposed to 
build a BWT-array for s, denoted as BWT(s), and to organize the 
patterns into a trie structure T, which is in fact a tree such that all 
those patterns with the same prefixes will be clustered together. 
Then, exploring a path in T, a group of patterns will be searched, 
instead of a single one, against BWT(s). Especially, the so-called 
multi-character checking is used, by which multiple characters 
from different patterns will be checked at each step when a segment 
in BWT(s) is scanned. In this way, high efficiency can be achieved. 
This method can be further improved by organizing all the patterns 
into an automaton [44], which is constructed by adding some links 
between nodes to trie T with each from a node v to another node 
u such that the string represented by the path from the root to u is 
the same as a suffix of the string represented by the path from the 
root to v. One objective of this method is to extend this kind of trie-
based methods to an automaton-based method. For this, two issues 
should be investigated:

A. How to use links to speed up a search of BWT(s)?

B. Whether the multi-character checking and links can be 
simultaneously used to speed up a searching?

Inexact matching 
As mentioned in Section 2, by the inexact string matching, we 

distinguish between k-mismatches and k-errors, as well as the 
string matching with don’t-care symbols. What needs to be done is 
to shift all the problems to an environment of massive patterns and 
very long targets.

String matching with k-mismatches 

By the string matching with k mismatches, we mean a problem 
to find all the occurrences of a pattern string pin a target string s 
with each occurrence having up to k positions different between p 
and s. This problem is important for DNA databases to support the 
biological research, where we need to locate all the appearances of 
a read in a genome sequence for disease diagnosis or some other 
purposes. Due to possible mistakes or mutations among different 
individuals, the occurrence of p in target s with some differences 
may need to be considered. As an example, consider a target 
s=ccacacagaagcc, and a pattern p=aaaaacaaac. Assume that k=4. Let 
us see whether there is an occurrence of pwith k mismatches that 
starts at the third location in s.

At only four locations s and p have different characters, implying 
an occurrence of p starting at the third location of s. Note that the 
case k=0 is the extensively studied string matching problem. 

An initial strategy for this problem is to build a BWT array A for 
s, and for a pattern p search A against p repeatedly to find all the 
possible string matching with k mismatches. This requires O(mn) 
time in the worst case, even worse than some existing on-line 

algorithms. To avoid redundant work done in the above process, 
a special tree structure, called an S-tree, needs to be utilized to 
record information on the mismatches between p and each path 
P made up of some entries of A, which are searched to find some 
possible string matchings with k mismatches. Concretely, each path 
in the S-tree can be considered as a vector V of length k+1 such that 
V[i]=j if and only if p[j]P[j] and it is the ith mismatch between p 
and P. More importantly, this kind of information can be used to 
derive mismatches between p and some other parts of s in terms 
of the mismatching information among different parts of p, instead 
of searching them in a normal way. Using the S-tree, the time 
complexity can be reduced to O(kn), where n≪n. This is better 
than ( log )O n k k , the best time complexity achievable by an on-
line algorithm, when log' kn n

k
<  . In extensive experiments have also 

been conducted, showing that the method with the S-tree uniformly 
outperforms any existing on-line approach. In a probabilistic 
analysis of n is given. In a next step, it will be investigated how 
to use the periodicity of pto speed up the computation, which has 
been used by the on-line algorithm discussed in [34]. However, it is 
not clear whether the periodicity of p can also be employed in an 
indexing environment. So, a thorough research is required on all 
different indexing mechanisms: suffix trees, suffix arrays, hashing 
and BWT arrays to see how the periodicity of p can be integrated.

String matching with k-errors

The string matching with k-errors is quite different from the 
string matching with k-mismatches. Hence, the methods developed 
for solving k mismatches cannot be directly used for them. In fact, 
almost all the algorithms proposed for k errors are based on the 
dynamical programming paradigm, using an nm matrix to store 
differences between p[1..i] and s[1..j] for each pair i, j(i=1,…,m; 
j=1,…,n). However, for the string matching with k errors, the matrix 
can be created column by column and thus only O(m) space is 
required for the task. In addition, by using the so-called diagonal 
wise monotocinity of the Levenshtein distance table recognized 
by Ukkonen [40], many entries in the matrix needn’t be generated, 
leading to an average time complexity O(kn) [42], which has been 
further improved by involving the use of mismatching statistics, and 
suffix trees built for patterns, as well as the partition of columns 
and the so-called shift-add strategy proposed by Baeza & Manber 
[43]. However, no effort has been made to index the target string in 
a way like the exact matching. As for the k mismatches, a BWT array 
for s needs to be constructed and searched, but combined with the 
dynamical programming computation. Specifically, the following 
investigation will be conducted.

A. Check whether it is possible to create a dynamical 
programming matrix columnal wise during a BWT array search.

B. Check whether the diagonal wise monotocinity of the 
Levenshtein distance table can be used during a BWT search.

C. Finally, we will also try to integrate the partition of 
columns and the use of matching statistics into a BWT array 
search.

http://dx.doi.org/10.31031/OABB.2018.01.000523
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String matching with don’t cares

We distinguish between two kinds of string matching with don’t 
cares: only the pattern containing don’t care symbols, and both the 
pattern and the target containing don’t care symbols. For the former 
problem, by establishing a suffix array for s, in which the positions 
of all the suffixes in s are stored according to the lexicographic 
order of the respective suffixes, the time complexity is bounded by 
O(O1/4+r), where r is the number of p’s occurrences in s. For the 
latter, by using the shift-add algorithm [45], only   (| | )mO n

w time is 
required, where w is the word size in bits of a computer.

For this research, the focus will be mainly on the latter problem 
to integrate the shift-add technique into a BWT array search. More 
specifically, the algorithm discussed in [45] should be modified 
by replacing the scan of s with a scan of BWS[s]. Since by BWS[s] 
we can check a character in p against multiple positions with the 
same character in s at each step, the algorithm discussed in can be 
possibly greatly improved.

Summary
In this article, a mini-review on the string matching in DNA 

databases is delivered and some potential researches on this issue 
are briefly discussed. It seems that by using the BWT-transformation 
as part of indexes, new algorithms can be achieved, which possibly 
work better than the traditional on-line strategies.
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