
Yangjun Chen*
Department of Applied Computer Science, University of Winnipeg, Canada

*Corresponding author: Yangjun Chen, Department of Applied Computer Science, University of Winnipeg, Canada, Email:

Submission: March 13, 2018; Published: May 11, 2018

String Matching in DNA Databases

Recent Progress
The core and the first step to take advantage of the new

sequencing technology is termed as read aligning, where a read is a
short nucleotide sequence of 30-1000 base pairs (bp) [3] generated
by a high throughput sequencing machine made by Illumina, Roche,
ABI/Life Technologies [4], which is in fact a sequence fragment
fetched from a longer DNA molecule present in a sample that is
fed into the machine (https://github.com/lh3/wgsim/). Most of
the next-generation sequencing projects begin with a reference
sequence which is a previously well studied, known genome. The
process of a read aligning is to find the meaning of reads, or in other
words, to determine their positions within a reference sequence,
which will then be used for an effective statistical analysis.

Compared to the traditional pattern matching problems, the
new challenge from the read aligning is its enormous volume, and
usually millions to billions of reads need to be aligned within a same
genome sequence. For example, to sequence a human molecule
sample with 15X coverage, one may need to align 1.5 billion reads
of length about 100 characters (bps). Another challenge is the so-
called inexact matching, by which we will find all the subsequences
in a genome sequence having at most k positions different from
a read or with k errors. Due to the polymorphisms or mutations
among individuals or even sequencing errors, a read may disagree
in some positions by an occurrence in the corresponding genome.
Again, due to the huge number of reads, the existing methods
have to be greatly modified to fit into such a new environment.
In the past decade, a new indexing structure based on the [5]
to speed up the matching of massive reads against different
genome sequences, based on the so-called Burrows-Wheeler
transformation (BWT-transformation for short) ([6] and also www.

youtube.com/watch?v=4n7NPk5-lwbI) and trie structures [7]
or automata over reads [8]. In terms of the test results reported
in [9], an exact read matching can be done 40% faster using our
new method than any existing strategies. The algorithm has been
successfully used in a biological research project conducted in an
RNA laboratory at University of Manitoba [10] (http://home.cc.um
anitoba.ca/~xiej/). The BWT can also be utilized to expedite the
string matching with k-mismatches [11,12]. However, this method
cannot be easily extended to handle the massive string matching
with k-mismatches or k-errors since when searching a trie or an
automaton the mismatch information or the word periodicity
cannot be directly employed in a BWT array scanning.

Literature Review
The matching of DNA sequences is just a special case of the

general string matching problem, which has always been one of the
main focuses in computer science. All the methods developed up to
now can be roughly divided into two categories: exact matching and
inexact matching. By the former, all the occurrences of a pattern
string p in a target string s will be searched. By the latter, a best
alignment between p and s (i.e., a correspondence with the highest
score) is looked for in terms of a given score matrix M, which is
established to indicate the relevance between characters [13]
(more exactly, the meanings represented by them.)

Exact matching

Scanning-based: By this kind of algorithms, both pattern p and
targets are scanned from left to right, but often with an auxiliary
data structure used to speed up the search, which is typically
constructed by a pre-processor. The first of them is the famous

Mini Review

Open Access
Biostatistics & Bioinformatics C CRIMSON PUBLISHERS

Wings to the Research

1/5Copyright © All rights are reserved by Yangjun Chen.

Volume - 1 Issue - 4

ISSN 2578-0247

Abstract

The recent development of next-generation sequencing has changed the way we carry out the molecular biology and genomic studies. It has
allowed us to sequence a DNA (Deoxyribonucleic acid) sequence at a significantly increased base coverage, as well as at a much faster rate [1]. This
facilitates building an excellent platform for a whole genome sequencing, and for a variety of sequencing-based analyses, including gene expressions,
mapping DNA-protein interactions, whole-transcriptome sequencing, and RNA (Ribonucleic acid) splicing profiles. For example, the RNA-Seq protocol
[2], in which processed mRNA is converted to cDNA and then sequenced, is enabling the identification of previously unknown genes and alternative
splice variants. The whole-genome sequencing of tumour cells can uncover previously unidentified cancer-initiating mutations.

http://crimsonpublishers.com/oabb/index.php
http://crimsonpublishers.com/oabb/index.php
http://crimsonpublishers.com/index.php

Open Acc Biostat Bioinform

 Copyright © Yangjun Chen

2/5How to cite this article: Yangjun C. String Matching in DNA Databases. Open Acc Biostat Bioinform. 1(4). OABB.000523. 2018.
DOI: 10.31031/OABB.2018.01.000523

Volume 1 - Issue - 4

Knuth & Morris [14] algorithm, which employs an auxiliary next-
table (for p) containing the so-called shift information (or say,
failure function values) to indicate how far to shift the pattern
from right to left when the current character in p fails to match the
current character in s. Its time complexity is bounded by O(m+n),
where m=|p| and n=|s|. The Boyer & Moore [15] approach works
a little bit better than the Knuth & Morris [14]. In addition to the
next-table, a skip-table (also for p) is kept. For a large alphabet and
small pattern, the expected number of character comparisons is
about n/m, and is O(m+n) in the worst case. Although these two
algorithms have never been used in practice [16], they sparked a
series of research on this problem, and are improved by different
researchers in different ways, such as the algorithms discussed
in [17-21]. However, the worst-case time complexity remains
unchanged. The idea of the ‘shift information’ has also been adopted
indifferent approaches [8,22-24] for the multiple-string matching,
by which s is searched for the occurrences of any one of a set of k
patterns: {p1,p2,…,pk}. Their algorithm needs only

1
()

k

i
O mi n

=

+∑ time,

where mi=|pi| (i=1,…,k). However, this algorithm cannot simply
be adapted to an index environment due to its working fashion to
search the characters in some by one, which is totally unsuitable
for indexes.

Index-based: In situations where a fixed string s is to be
searched repeatedly, it is worthwhile constructing an index over
s, such as suffix trees, suffix arrays, and more recently the BWT-
transformation. A suffix tree is in fact a trie structure [7] over all
the suffixes of s; and by using the Weiner’s algorithm it can be built
in O(n) time [25]. However, in comparison with suffix trees, the
BWT-transformation is more suitable for DNA sequences due to
its small alphabet since the smaller is, the smaller space will
be occupied by the corresponding BWT array [26]. According to a
survey done by Li & Homer [1] on sequence alignment algorithms
for next-generation sequencing, the average space required for
each character is 12-17 bytes for suffix trees while only 0.5-2 byte
for the BWT. The experiments reported in [9] also confirm this
distinction. For example, the file size of chromosome 1 of human
is 270Mb. But its suffix tree is of 26Gb in size while its BWT needs
only 390Mb-1Gb for different compression rates of auxiliary arrays,
completely handle-able on PC or laptop machines. The huge size of a
suffix tree may greatly increase the computation time. For example,
for the Zebra fish and Rat genomes (sizes 1,464,443,456pb, and
2,909,701,677pb, respectively), one cannot finish the construction
of their suffix trees within two days in a computer with 32GB RAM
[27].

Hash-based: Intrinsically, all hash-table-based algorithms
[28-30] extract short subsequences called ‘seeds’ from a pattern
sequence p and create a signature (a bit string) for each of them.
The search of a target sequence s is similar to that of the Brute
Force searching, but rather than directly comparing the pattern at
successive positions in s, their respective signatures are compared.
Then, stick each matching seed together to form a complete
alignment. Its expected time is O(m+n), but in the worst case, which

is extremely unlikely, it takes O(m.n) time. The hash technique has
also been extensively used in the DNA sequence research [30,31],
and all experiments show that they are generally inferior to the
suffix tree and the BWT index in both running time and space
requirements [27,31,32].

Inexact string matching
K-mismatches and k-errors: The inexact matching [33] ranges

from the score-based to the k-mismatching [34-36], as well as the
k-error [37]. By the score-based method, a matrix M of size ||||
is used to indicate the relevance between characters. The algorithm
designed is to find the best alignment (or say, the alignment with
the highest scores) between two given strings, which can be DNA
sequences, protein sequences, or XML documents; and the dynamic
programming paradigm is often utilized to solve the problem [38].
By the string matching with k-mismatching or k-errors, we will
find all those subsequences q of s such that d(p,q)k, where d() is
a distance function. When it is the Hamming distance (defined to
be the number of different positions), the problem is known as the
sequence matching with k mismatches. When it is the Levenshtein
distance, the problem is known as the sequence matching with k
errors [8,26]. By the Levenshtein distance, the distance function is
defined as follows:

(), 1, , 1 1, 1, , ,{ () , () }, i j i j i i j j i j i jd min d w p d w q d w p q− − − − +Φ= + Φ +

where di,j represents the distance between p[1..i] and q[1..j],
pi(qj) the ith character in p(jth character in q), an empty character,
and w(pi,qj) the cost to transform pi into qj.

There is a bunch of algorithms proposed for this problem,
such as for the k-mismatch; and [39,40] for the k-error. By the best
method for the k-mismatch a time complexity (log)O n k k can be
achieved. Especially, for small k and large , the search requires a
sublinear time on average. In addition, the BWT and suffix trees can
also be used as indexes for this problem. For the k-error, the worst
case time complexity is bounded by O(mn). But the expected time
can reach O(kn) by an algorithm discussed in [33].

Don’t care symbols: As a different kind of inexact matching,
the string matching with Don’t-Cares (or wild-cards) [41] has also
been an active research topic for decades, by which we may have
wild-cards in p, in s, or in both of them. A wild card matches any
character. Due to this property, the ‘match’ relation is no longer
transitive, which precludes straightforward adaption of the shift
information used by Knuth & Morris [14]. All the methods proposed
to solve this problem also require quadratic time [42]. Using a suffix
array as the index, however, the searching time can be reduced
to O(logn) for some patterns, which contain only a sequence of
consecutive Don’t Cares [43].

Methodology

Massive string pattern mapping

By the massive pattern matching, we mean to find all the
occurrences of all the patterns in a target string s. The number of

http://dx.doi.org/10.31031/OABB.2018.01.000523

3/5How to cite this article: Yangjun C. String Matching in DNA Databases. Open Acc Biostat Bioinform. 1(4). OABB.000523. 2018.
DOI: 10.31031/OABB.2018.01.000523

Open Acc Biostat Bioinform Copyright © Yangjun Chen

Volume 1 - Issue - 4

patterns can be millions to billions. In [9], a method is proposed to
build a BWT-array for s, denoted as BWT(s), and to organize the
patterns into a trie structure T, which is in fact a tree such that all
those patterns with the same prefixes will be clustered together.
Then, exploring a path in T, a group of patterns will be searched,
instead of a single one, against BWT(s). Especially, the so-called
multi-character checking is used, by which multiple characters
from different patterns will be checked at each step when a segment
in BWT(s) is scanned. In this way, high efficiency can be achieved.
This method can be further improved by organizing all the patterns
into an automaton [44], which is constructed by adding some links
between nodes to trie T with each from a node v to another node
u such that the string represented by the path from the root to u is
the same as a suffix of the string represented by the path from the
root to v. One objective of this method is to extend this kind of trie-
based methods to an automaton-based method. For this, two issues
should be investigated:

A. How to use links to speed up a search of BWT(s)?

B. Whether the multi-character checking and links can be
simultaneously used to speed up a searching?

Inexact matching
As mentioned in Section 2, by the inexact string matching, we

distinguish between k-mismatches and k-errors, as well as the
string matching with don’t-care symbols. What needs to be done is
to shift all the problems to an environment of massive patterns and
very long targets.

String matching with k-mismatches

By the string matching with k mismatches, we mean a problem
to find all the occurrences of a pattern string pin a target string s
with each occurrence having up to k positions different between p
and s. This problem is important for DNA databases to support the
biological research, where we need to locate all the appearances of
a read in a genome sequence for disease diagnosis or some other
purposes. Due to possible mistakes or mutations among different
individuals, the occurrence of p in target s with some differences
may need to be considered. As an example, consider a target
s=ccacacagaagcc, and a pattern p=aaaaacaaac. Assume that k=4. Let
us see whether there is an occurrence of pwith k mismatches that
starts at the third location in s.

At only four locations s and p have different characters, implying
an occurrence of p starting at the third location of s. Note that the
case k=0 is the extensively studied string matching problem.

An initial strategy for this problem is to build a BWT array A for
s, and for a pattern p search A against p repeatedly to find all the
possible string matching with k mismatches. This requires O(mn)
time in the worst case, even worse than some existing on-line

algorithms. To avoid redundant work done in the above process,
a special tree structure, called an S-tree, needs to be utilized to
record information on the mismatches between p and each path
P made up of some entries of A, which are searched to find some
possible string matchings with k mismatches. Concretely, each path
in the S-tree can be considered as a vector V of length k+1 such that
V[i]=j if and only if p[j]P[j] and it is the ith mismatch between p
and P. More importantly, this kind of information can be used to
derive mismatches between p and some other parts of s in terms
of the mismatching information among different parts of p, instead
of searching them in a normal way. Using the S-tree, the time
complexity can be reduced to O(kn), where n≪n. This is better
than (log)O n k k , the best time complexity achievable by an on-
line algorithm, when log' kn n

k
< . In extensive experiments have also

been conducted, showing that the method with the S-tree uniformly
outperforms any existing on-line approach. In a probabilistic
analysis of n is given. In a next step, it will be investigated how
to use the periodicity of pto speed up the computation, which has
been used by the on-line algorithm discussed in [34]. However, it is
not clear whether the periodicity of p can also be employed in an
indexing environment. So, a thorough research is required on all
different indexing mechanisms: suffix trees, suffix arrays, hashing
and BWT arrays to see how the periodicity of p can be integrated.

String matching with k-errors

The string matching with k-errors is quite different from the
string matching with k-mismatches. Hence, the methods developed
for solving k mismatches cannot be directly used for them. In fact,
almost all the algorithms proposed for k errors are based on the
dynamical programming paradigm, using an nm matrix to store
differences between p[1..i] and s[1..j] for each pair i, j(i=1,…,m;
j=1,…,n). However, for the string matching with k errors, the matrix
can be created column by column and thus only O(m) space is
required for the task. In addition, by using the so-called diagonal
wise monotocinity of the Levenshtein distance table recognized
by Ukkonen [40], many entries in the matrix needn’t be generated,
leading to an average time complexity O(kn) [42], which has been
further improved by involving the use of mismatching statistics, and
suffix trees built for patterns, as well as the partition of columns
and the so-called shift-add strategy proposed by Baeza & Manber
[43]. However, no effort has been made to index the target string in
a way like the exact matching. As for the k mismatches, a BWT array
for s needs to be constructed and searched, but combined with the
dynamical programming computation. Specifically, the following
investigation will be conducted.

A. Check whether it is possible to create a dynamical
programming matrix columnal wise during a BWT array search.

B. Check whether the diagonal wise monotocinity of the
Levenshtein distance table can be used during a BWT search.

C. Finally, we will also try to integrate the partition of
columns and the use of matching statistics into a BWT array
search.

http://dx.doi.org/10.31031/OABB.2018.01.000523

Open Acc Biostat Bioinform

 Copyright © Yangjun Chen

4/5How to cite this article: Yangjun C. String Matching in DNA Databases. Open Acc Biostat Bioinform. 1(4). OABB.000523. 2018.
DOI: 10.31031/OABB.2018.01.000523

Volume 1 - Issue - 4

String matching with don’t cares

We distinguish between two kinds of string matching with don’t
cares: only the pattern containing don’t care symbols, and both the
pattern and the target containing don’t care symbols. For the former
problem, by establishing a suffix array for s, in which the positions
of all the suffixes in s are stored according to the lexicographic
order of the respective suffixes, the time complexity is bounded by
O(O1/4+r), where r is the number of p’s occurrences in s. For the
latter, by using the shift-add algorithm [45], only (| |)mO n

w time is
required, where w is the word size in bits of a computer.

For this research, the focus will be mainly on the latter problem
to integrate the shift-add technique into a BWT array search. More
specifically, the algorithm discussed in [45] should be modified
by replacing the scan of s with a scan of BWS[s]. Since by BWS[s]
we can check a character in p against multiple positions with the
same character in s at each step, the algorithm discussed in can be
possibly greatly improved.

Summary
In this article, a mini-review on the string matching in DNA

databases is delivered and some potential researches on this issue
are briefly discussed. It seems that by using the BWT-transformation
as part of indexes, new algorithms can be achieved, which possibly
work better than the traditional on-line strategies.

References
1. Li H, Homer N (2010) A survey of sequence alignment algorithms for

next-generation sequencing. Briefings in Bioinformatics 11(5): 473-483.

2. Jiang H, Wong WH (2008) Seq Map: mapping massive amount of oligo
nucleotides to the genome. Bioinformatics 24(20): 2395-2396.

3. Schatz M (2009) Cloudburst: highly sensitive read mapping with map
reduce. Bioinformatics 25(11): 1363-1369.

4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic bolger: A flexible
trimmer for illumina sequence data. Bioinformatics 30(15): 2114-2120.

5. Chen Y, Wu Y (2018) On the string matching with k-mismatches.
Theoretical Computer Science 726: 5-29.

6. Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression
algorithm. pp. 1-24.

7. Knuth DE (1975) The art of computer programming. Addison-Wesley
Publish Com, Massachusetts, USA, Vol. 3.

8. Aho AV, Corasick MJ (1975) Efficient string matching: an aid to
bibliographic search. Communication of the ACM 23(1): 333-340.

9. Chen Y, Wu Y, Xie J (2016) An efficient algorithm for read matching in
DNA databases. Proc Int Conf DBKDA’2016, Lisbon, Portugal, pp. 23-34.

10. Wu S, Manber U (1994) A fast algorithm for multi-pattern searching.
Technical Report TR-94-17, Dept Computer Science, Chung-Cheng
University, Taiwan.

11. Chen Y, Wu Y (2018) BWT: An index structures to speed-up both exact
and inexact string matching. In: Samui, Ntalampiras R (Eds.), Springer
Verlag, Germany.

12. Chen Y, Wu Y (2017) BWT arrays and mismatching trees: A new way for
string matching with k mismatches. Proc Intl Conf on Data Engineering
(ICDE2017), IEEE, San Diego, USA, pp. 339-410.

13. Smith AD, Xuan Z, Zhang MQ (2008) Using quality scores and longer
reads improves accuracy of Solexa read mapping. BMC Bioinformatics
9: 128.

14. Knuth DE, Morris JH, Pratt VR (1977) Fast pattern matching in strings.
SIAM Journal on Computing 6(2): 323-350.

15. Boyer RS, Moore JS (1977) A fast string searching algorithm.
Communications of the ACM 20(10): 762-772.

16. Navarro G, Raffinot M (2002) Pattern matching in strings. Cambridge
University Press, USA.

17. Apostolico A, Giancarlo R (1986) The Boyer-Moore-Galil string searching
strategies revisited. SIAM Journal on Computing 15(1): 98-105.

18. Colussi L, Galil Z, Giancarlo R (1990) On the exact complexity of string
matching. Proc. 31st Annual IEEE Symposium of Foundation of Computer
Science 1: 135-144.

19. Galil Z (1977) On improving the worst case running time of the Boyer-
Moore string searching algorithm. Communication of the ACM 22(9):
505-508.

20. Lecroq T (1992) A variation on the Boyer-Moore algorithm. Theoretical
Computer Science 92(1): 119-144.

21. Tarhio J, Ukkonen E (1993) Approximate boyer-moore string matching.
SIAM Journal on Computing 22(2): 243-260.

22. Commentz B (1979) A string matching algorithm fast on the average.
Proc 6th Colloquium on Automata, Languages and Programming, pp.
118-132.

23. Crochemore M, Czumaj A, Gasieniec L, Jarominek S, Lecroq T, et al.
(1999) Fast practical multi-pattern matching. Information Processing
Letters 71: 107-113.

24. Hon W, Tak WL, Kunihiko S, Wing-KS, Siu MY (1973) A space and
time efficient algorithm for constructing compressed suffix arrays.
Algorithmica 48(1): 23-36.

25. Weiner P (2006) Linear pattern matching algorithm. Proc 14th IEEE
Symposium on Switching and Automata Theory pp. 1-11.

26. Li H, Durbin R (2010) Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics 26(5): 589-595.

27. Harrison MC (1971) Implementation of the substring test by hashing.
Communication of the ACM 14(12): 777-779.

28. Karp RL, Rabin MO (1987) Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development 31(2): 249-260.

29. Lin H, Zhang Z, Zhang MQ, Ma B, Li M (2008) ZOOM! Zillions of oligos
mapped. Bioinformatics 24(21): 2431-2437.

30. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res 18: 1851-
1858.

31. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: Short oligonucleotide
alignment program. Bioinformatics 24(5): 713-714.

32. Chang WL, Lampe J (2005) Theoretical and empirical comparisons of
approximate string matching algorithms. In: Apostolico A, Crocchemore
M, Galil Z, Manber U (Eds.), Combinatorial pattern matching, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, Germany, 644: 175-
184.

33. Amir A, Lewenstein M, Porat E (2004) Faster algorithms for string
matching with k mismatches. Journal of Algorithms 50(2): 257-275.

34. Galil Z, Giancarlo R (1986) Improved string matching with k mismatches.
ACM SIGACT News 17(4): 52-54.

http://dx.doi.org/10.31031/OABB.2018.01.000523
https://www.ncbi.nlm.nih.gov/pubmed/20460430
https://www.ncbi.nlm.nih.gov/pubmed/20460430
https://www.ncbi.nlm.nih.gov/pubmed/18697769/
https://www.ncbi.nlm.nih.gov/pubmed/18697769/
https://www.ncbi.nlm.nih.gov/pubmed/19357099
https://www.ncbi.nlm.nih.gov/pubmed/19357099
https://www.ncbi.nlm.nih.gov/pubmed/24695404
https://www.ncbi.nlm.nih.gov/pubmed/24695404
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://biit.cs.ut.ee/~vilo/edu/2002-03/Tekstialgoritmid_I/Articles/Exact/Aho-Corasick.pdf
https://biit.cs.ut.ee/~vilo/edu/2002-03/Tekstialgoritmid_I/Articles/Exact/Aho-Corasick.pdf
http://webglimpse.net/pubs/TR94-17.pdf
http://webglimpse.net/pubs/TR94-17.pdf
http://webglimpse.net/pubs/TR94-17.pdf
https://ieeexplore.ieee.org/document/7929994/
https://ieeexplore.ieee.org/document/7929994/
https://ieeexplore.ieee.org/document/7929994/
https://www.ncbi.nlm.nih.gov/pubmed/18307793
https://www.ncbi.nlm.nih.gov/pubmed/18307793
https://www.ncbi.nlm.nih.gov/pubmed/18307793
https://pdfs.semanticscholar.org/4479/9559a1067e06b5a6bf052f8f10637707928f.pdf
https://pdfs.semanticscholar.org/4479/9559a1067e06b5a6bf052f8f10637707928f.pdf
https://dl.acm.org/citation.cfm?id=359859
https://dl.acm.org/citation.cfm?id=359859
https://epubs.siam.org/doi/abs/10.1137/0215007
https://epubs.siam.org/doi/abs/10.1137/0215007
https://ieeexplore.ieee.org/document/89532/
https://ieeexplore.ieee.org/document/89532/
https://ieeexplore.ieee.org/document/89532/
https://dl.acm.org/citation.cfm?id=359146.359148
https://dl.acm.org/citation.cfm?id=359146.359148
https://dl.acm.org/citation.cfm?id=359146.359148
https://www.sciencedirect.com/science/article/pii/0304397592901397
https://www.sciencedirect.com/science/article/pii/0304397592901397
https://epubs.siam.org/doi/abs/10.1137/0222018
https://epubs.siam.org/doi/abs/10.1137/0222018
https://link.springer.com/chapter/10.1007%2F3-540-09510-1_10
https://link.springer.com/chapter/10.1007%2F3-540-09510-1_10
https://link.springer.com/chapter/10.1007%2F3-540-09510-1_10
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.6367&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.6367&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.6367&rep=rep1&type=pdf
https://link.springer.com/article/10.1007%2Fs00453-006-1228-8
https://link.springer.com/article/10.1007%2Fs00453-006-1228-8
https://link.springer.com/article/10.1007%2Fs00453-006-1228-8
https://ieeexplore.ieee.org/document/4569722/
https://ieeexplore.ieee.org/document/4569722/
https://www.ncbi.nlm.nih.gov/pubmed/20080505
https://www.ncbi.nlm.nih.gov/pubmed/20080505
https://dl.acm.org/citation.cfm?id=362934
https://dl.acm.org/citation.cfm?id=362934
https://ieeexplore.ieee.org/document/5390135/
https://ieeexplore.ieee.org/document/5390135/
https://www.ncbi.nlm.nih.gov/pubmed/18684737
https://www.ncbi.nlm.nih.gov/pubmed/18684737
https://www.ncbi.nlm.nih.gov/pubmed/18714091
https://www.ncbi.nlm.nih.gov/pubmed/18714091
https://www.ncbi.nlm.nih.gov/pubmed/18714091
https://www.ncbi.nlm.nih.gov/pubmed/18227114
https://www.ncbi.nlm.nih.gov/pubmed/18227114
https://link.springer.com/chapter/10.1007%2F3-540-56024-6_14
https://link.springer.com/chapter/10.1007%2F3-540-56024-6_14
https://link.springer.com/chapter/10.1007%2F3-540-56024-6_14
https://link.springer.com/chapter/10.1007%2F3-540-56024-6_14
https://link.springer.com/chapter/10.1007%2F3-540-56024-6_14
https://www.sciencedirect.com/science/article/pii/S019667740300097X
https://www.sciencedirect.com/science/article/pii/S019667740300097X
https://dl.acm.org/citation.cfm?id=8309
https://dl.acm.org/citation.cfm?id=8309

5/5How to cite this article: Yangjun C. String Matching in DNA Databases. Open Acc Biostat Bioinform. 1(4). OABB.000523. 2018.
DOI: 10.31031/OABB.2018.01.000523

Open Acc Biostat Bioinform Copyright © Yangjun Chen

Volume 1 - Issue - 4

35. Landau GM, Vishkin U (1986) Efficient string matching with k
mismatches. Theoretical Computer Science 43: 239-249.

36. Landau GM, Vishkin U (1985) Efficient string matching in the presence of
errors. Proc 26th Annual IEEE Symposium on Foundations of Computer
Science 126-136.

37. Eddy SR (2004) What is dynamic programming? Nat Biotechnol 22(7):
909-910.

38. Tarhio J, Ukkonen E (1993) Approximate boyer-moore string matching.
SIAM Journal on Computing 22(2): 243-260.

39. Ukkonen E (1992) Approximate string-matching with q-grams and
maximal matches. Theoretical Computer Science 92(1): 191-211.

40. Manber U, Myers EW (1990) Suffix arrays: A new method for on-line
string searches. Proc the 1st Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, USA, pp. 319-327.

41. Pinter RY (1985) Efficient string matching with don’t’ care patterns. In:
Apostolico A, Galil Z (Eds.), Combinatorial Algorithms on Words, NATO
ASI Series, Springer-Verlag, Berlin, Germany, 12: 11-29.

42. Manber U, Baeza RA (1991) An algorithm for string matching with a
sequence of don’t cares. Information Processing Letters 37(3): 133-136.

43. Chen Y, Wu Y (2017) Searching BWT against pattern matching machine
to find multiple string matches. Proc Intl Conf on Cyber-Enabled
Distributed Computing and Knowledge Discovery, IEEE, Nanjing, China,
pp. 167-176.

44. Seward J (2007) Bzip2 and libbzip2, version 1.0. 5: A program and
library for data compression.

45. Xie J, Chen Y. Safeguarding transcriptome integrity and hormone
production by hnRNP L. Cell Research.

For possible submissions Click Here Submit Article

Creative Commons Attribution 4.0
International License

Open Access Biostatistics & Bioinformatics

Benefits of Publishing with us

• High-level peer review and editorial services
• Freely accessible online immediately upon publication
• Authors retain the copyright to their work
• Licensing it under a Creative Commons license
• Visibility through different online platforms

http://dx.doi.org/10.31031/OABB.2018.01.000523
https://www.sciencedirect.com/science/article/pii/0304397586901787
https://www.sciencedirect.com/science/article/pii/0304397586901787
https://ieeexplore.ieee.org/document/4568136/
https://ieeexplore.ieee.org/document/4568136/
https://ieeexplore.ieee.org/document/4568136/
https://www.ncbi.nlm.nih.gov/pubmed/15229554
https://www.ncbi.nlm.nih.gov/pubmed/15229554
https://epubs.siam.org/doi/abs/10.1137/0222018
https://epubs.siam.org/doi/abs/10.1137/0222018
https://www.sciencedirect.com/science/article/pii/0304397592901434
https://www.sciencedirect.com/science/article/pii/0304397592901434
https://link.springer.com/chapter/10.1007%2F978-3-642-82456-2_2
https://link.springer.com/chapter/10.1007%2F978-3-642-82456-2_2
https://link.springer.com/chapter/10.1007%2F978-3-642-82456-2_2
https://www.sciencedirect.com/science/article/pii/002001909190032D
https://www.sciencedirect.com/science/article/pii/002001909190032D
https://ieeexplore.ieee.org/document/8250354/
https://ieeexplore.ieee.org/document/8250354/
https://ieeexplore.ieee.org/document/8250354/
https://ieeexplore.ieee.org/document/8250354/
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.pdf
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.pdf
http://crimsonpublishers.com/online-submission.php
http://crimsonpublishers.com/oabb/index.php

	String Matching in DNA Databases
	Abstract
	Recent Progress
	Literature Review
	Exact matching
	Inexact string matching

	Methodology
	Massive string pattern mapping
	Inexact matching
	String matching with k-mismatches
	String matching with k-errors
	String matching with don’t cares

	Summary
	References

