
Building Signature-Trees on Path Signatures in Document Databases 53

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Building Signature-Trees
on Path Signatures in
Document Databases

Yangjun Chen
University of Winnipeg, Canada

Gerald Huck
IPSI Institute, Germany

ABSTRACT
Java is a prevailing implementation platform for XML-based systems. Several high-
quality in-memory implementations for the standardized XML-DOM API are available.
However, persistency support has not been addressed. In this chapter, we discuss this
problem and introduce PDOM (persistent DOM) to accommodate documents as
permanent object sets. In addition, we propose a new indexing technique: path
signatures to speed up the evaluation of path-oriented queries against document object
sets, which is further enhanced by combining the technique of signature-trees with it
to expedite scanning of signatures stored in a physical file.

INTRODUCTION
With the rapid advance of the Internet, management of structured documents such

as XML documents has become more and more important (Suciu & Vossen, 2000; World
Wide Web, 1998a; Marchiori, 1998). As a subset of SGML, XML is recommended by the
W3C (World Wide Web Consortium) as a document description metalanguage to

54 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

exchange and manipulate data and documents on the WWW. It has been used to code
various types of data in a wide range of application domains, including a Chemical
Markup Language for exchanging data about molecules and the Open Financial Ex-
change for swapping financial data between banks, and between banks and customers
(Bosak, 1997). Also, a growing number of legacy systems are adapted to output data in
the form of XML documents.

In this chapter, we introduce a storage method for documents called PDOM
(persistent DOM), implemented as a lightweight, transparent persistency memory layer,
which does not require the burdensome design of a fixed schema. In addition, we propose
a new indexing technique: path signatures to speed up the evaluation of path-oriented
queries against document object sets, which are organized into a tree structure called a
signature-tree. In this way, the scanning of a signature file is reduced to a binary tree
search, which can be performed efficiently. To show the advantage of our method, the
time complexity of searching a signature-tree is analyzed and the permanent storage of
signature-trees is discussed in great detail.

BACKGROUND
The Document Object Model (DOM) is a platform- and language-neutral interface

for XML. It provides a standard set of objects for representing XML data: a standard
model of how these objects can be combined and a standard interface for accessing and
manipulating them (Pixley 2000). There are half a dozen DOM implementations available
for Java from several vendors such as IBM, Sun Microsystems and Oracle, but all these
implementations are designed to work in main memory only. In recent years, efforts have
been made to find an effective way to generate XML structures that are able to describe
XML semantics in underlying relational databases (Chen & Huck, 2001; Florescu &
Kossmann, 1999; Shanmugasundaram et al., 1999; Shanmugasundaram & Shekita, 2000;
Yosjikawa et al., 2001). However, due to the substantial difference between the nested
element structures of XML and the flat relational data, much redundancy is introduced,
i.e., the XML data is either flattened into tuples containing many redundant elements,
or has many disconnected elements. Therefore, it is significant to explore a way to
accommodate XML documents, which is different from the relational theory. In addition,
a variety of XML query languages have been proposed to provide a clue to manipulate
XML documents (Abiteboul et al., 1996; Chamberlin et al., 2001; Christophides et al.,
2000; Deutsch et al., 1989; Robie et al., 1998; Robie, Chamberlin & Florescu, 2000).
Although the languages differ according to expressiveness, underlying formalism and
data model, they share a common feature: path-oriented queries. Thus, finding efficient
methods to do path matching is very important to evaluation of queries against huge
volumes of XML documents.

SYSTEM ARCHITECTURE
The system architecture can be pictorially depicted as shown in Figure 1, which

consists of three layers: persistent object manager, standard DOM API and specific
PDOM API, and application support.

Building Signature-Trees on Path Signatures in Document Databases 55

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Persistent Object Manager — The PDOM mediates between in-memory DOM
object hierarchies and their physical representation in binary random access files.
The central component is the persistent object manager. It controls the life cycle
of objects, serializes multi-threaded method invocations and synchronizes objects
with their file representation. In addition, it contains two sub-components: a cache
to improve performance and a commit control to mark recovery points in case of
system crashes. These two components can be controlled by users through tuning
parameters.

2. Standard DOM API and Specific PDOM API — The standard DOM API methods
for object hierarchy manipulation are transparently mapped to physical file opera-
tions (read, write and update). The system aims at hiding the storage layer from an
application programmer’s view to the greatest possible extent. Thus, for most
applications, it is sufficient to use only standard DOM methods. The only
exception is document creation, which is deliberately left application-specific by
the W3C DOM standard. The specific PDOM API allows an application to be aware
of the PDOM to tune system parameters for the persistent object manager as well
as its subsystems: cache and commit control. The specific API is mainly for the fine-
grained control of the PDOM, not intended for the casual programmers. Rather, it
is the place to experiment with ideas and proof concepts.

3. Application Support — This layer is composed of a set of functions which can be
called by an application to read, write, update or retrieve a document. In addition,
for a programmer with deep knowledge on PDOM, some functions are available to
create a document, to commit an update operation and to compact a PDOM file, in
which documents are stored as object hierarchies.

In the database (or PDOM pool), the DOM object hierarchies are stored as binary
files while the index structures/path signatures are organized as a pat-tree.

create,
commit, compact

read, write, update,
document retrieval

Application support

Specific PDOM API Standarc PDOM API

 Path signatures Binary files

 Commit
 control

 Cache Document manipulation

Persistent object manager

Figure 1. Logical Architecture of the System

56 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

STORAGE OF DOCUMENTS AS
BINARY FILES

The format of the PDOM binary files used to accommodate the object hierarchies
is depicted in Figure 2.

It is organized in node pages, each containing 128 serialized DOM objects. In
PDOM, each object (node) corresponds to a document identifier, an element name, an
element value, a “Comment” or a “Processing Instruction.” The attributes of an element
are stored with the corresponding element name. These object (node) types are equiva-
lent to the node types in XSL (World Wide Web Consortium, 1998b) data model. Thus,
a page does not have a fixed length in bytes, but a fixed number of objects it holds. At
the beginning of the file, there are two pointers. The first points to a dictionary containing
two mappings, by which each element name ei and attribute aj are mapped to a different
number, respectively; the numerical values are used for compact storage. The second
points to the node page index (NPI). The NPI holds an array of pointers to the start of
each node page.

Each object is serialized as follows:
1. A type flag indicating the DOM-type: document identifier, element name, element

value, “Comment” or “Processing Instruction.”
2. The object content may be an integer representing an element name, a PCDATA

(more or less comparable to a string) or a string (WTF-8 encoded) representing a
“Comment” or a “Processing Instruction.”

3. A parent-element identifier (if available).
4. A set of attribute-value pairs, where each attribute name is represented by an

integer, which can be used to find the corresponding attribute name in the
associated data dictionary. The attribute value is a WTF-8 encoded string.

5. The number of sub-elements of an element and its sub-element identifiers.

This serialization approach is self-describing, i.e., depending on the type flag, the
serialization structure and the length of the remaining segments can be determined. The
mapping between object identifiers in memory (OID) and their physical file location is
given by the following equation:

OID = PI * 128 + i,

where PI is the index of the containing node page in the NPI and i is the object index within
that page. Obviously, this address does not refer directly to any byte offset in the file

 length … length e1 ¾ 1
 e2 ¾ 2

 a1 ¾ 1, a2 ¾ 2
a3 ¾ 3

 … …
… …

pointer to dictionary pointer to node page index

node-page1 node-pagen data dictionary node page index

 … …

Figure 2. Binary File for Documents

Building Signature-Trees on Path Signatures in Document Databases 57

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

or page (which may change over time). Because of this, it can be used as unique,
immutable object identifier within a single document. In the case of multiple documents,
we associate each OID with a docID, to which it belongs. Example 1 helps for illustration.

Example 1
In Figure 3(a), we show a simple XML document. It will be stored in a binary file as

shown in Figure 3(b).
From Figure 3(b), we can see that the first four bytes are used to store a pointer to

the dictionary, in which an element name or an attribute name is mapped to an integer.
(For example, the element name “letter” is mapped to “0,” “date” is mapped to “1” and
so on.) The second four bytes are a pointer to the node page index, which contains only
one entry (four bytes) for this example, pointing to the beginning of the unique node page
stored in this file. In this node page, each object (node) begins at a byte which shows
the object type. In our implementation, five object types are considered. They are
“document,” “text” (used for an element value), “3,” “4,” respectively. The physical
identifier of an object is implicitly implemented as the sequence number of the object
appearing within a node page. For example, the physical identifier of the object with the
type “document” is “0,” the physical identifier of the object for “letter” is “1” and so on.
The logic object identifier is calculated using the above simple equation when a node
page is loaded into the main memory. Finally, we pay attention to the data dictionary
structure. In the first line of the data dictionary, the number of the element names is stored,
followed by the sequence of element names. Then, each element name is considered to
be mapped implicitly to its sequence number in which it appears. The same method applies
to the mapping for attribute names.

Beside the binary files for storing documents, another main data structure of the
PDOM is the file for path signatures used to optimize the query evaluation. To speed up
the scanning of the signatures, we organize them into a pat-tree, which reduces the time

Figure 3. A Simple Document and its Storage

byte num ber

0: 500
4: 565
8: 0

pointe r t o the da ta dict ionary
pointe r t o the node page index
first page number

9: 0 node t ype “ docume nt”
10: 1 number of chi ldren
11: 1 inte ger representing t he child’s i d

12: 2 node t ype “ element nam e”
13: 0 inte ger representing “ le tte r”
14: 0 pare nt ID of this node

number of at tri butes15: 1
16: 0 inte ger representing “ fi lecode”

 17: “9302” at tri but e va lue
22: 5 number of chi ldren
23: 2 ID of a child (“ date ” e leme nt)

...... ...

508:

500:

da te

7
the foll owing i s the da ta dic tionary
number of el ement names

an e lement name “da te ”
501: le tte r an e lement name “l ett er”

...
557

...
1

...
number of at tri bute names
......

565
...
8

<le tte r filec ode= ”9302” >

<da te>January 27, 1993< /dat e>

<greeti ng>&sa lute ; Jean Luc ,</ greet ing>

<body>

<pa ra>How are you doi ng?< /para>

<pa ra>Isn’t it

< e mph>about tim e< /emph>

you vi sit?

</para>

< /body>

< closi ng>S ee you soon,</ closi ng>

< sig>G enise</si g>

< /le tte r>

(a) (b)

58 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

complexity by an order of magnitude or more. We discuss this technique in the next
section in detail.

PATH-ORIENTED LANGUAGE AND
PATH SIGNATURES

Now we discuss our indexing technique. To this end, we first outline the path-
oriented query language, which is necessary for the subsequent discussion. Then, the
concept of path signatures will be described, and we will discuss the combination of path
signatures and pat-trees, as well as the corresponding algorithm implementation in great
detail.

Path-Oriented Language
Several path-oriented languages such as XQL (Robie et al., 1998) and XML-QL

(Deutsch et al., 1998) have been proposed to manipulate tree-like structures as well as
attributes and cross-references of XML documents. XQL is a natural extension to the XSL
pattern syntax, providing a concise, understandable notation for pointing to specific
elements and for searching nodes with particular characteristics. On the other hand,
XML-QL has operations specific to data manipulation such as joins and supports
transformations of XML data. XML-QL offers tree-browsing and tree-transformation
operators to extract parts of documents to build new documents. XQL separates
transformation operation from the query language. To make a transformation, an XQL
query is performed first, then the results of the XQL query are fed into XSL (World Wide
Web Consortium, 1998b) to conduct transformation.

An XQL query is represented by a line command which connects element types
using path operators (‘/’ or ‘//’). ‘/’ is the child operator which selects from immediate
child nodes. ‘//’ is the descendant operator which selects from arbitrary descendant
nodes. In addition, the symbol ‘@’ precedes attribute names. By using these notations,
all paths of tree representation can be expressed by element types, attributes, ‘/’ and ‘@’.
Exactly, a simple path can be described by the following Backus-Naur Form:

<simplepath>::=<PathOP><SimplePathUnit>|<PathOp><SimplePathUnit>‘@’<AttName>
<PathOp> ::= ‘/’ | ‘//’
<SimplePathUnit>::=<ElementType> | <ElementType><PathOp><SimplePathUnit>

The following is a simple path-oriented query:

/letter//body [para $contains$’visit’],

where /letter//body is a path and [para $contains$’visited’] is a predicate, enquiring
whether element “para” contains a word ‘visited.’

Signature and Path Signature
To speed up the evaluation of the path-oriented queries, we store all the different

paths in a separate file and associate each path with a set of pointers to the positions of

Building Signature-Trees on Path Signatures in Document Databases 59

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the binary file for the documents, where the element value can be reached along the path
(see Figure 4 for illustration).

This method can be improved greatly by associating each path with a so-called path
signature used to locate a path quickly. In addition, all the path signatures can be
organized into a pat-tree, leading to a further improvement of performance.

Signature files are based on the inexact filter. They provide a quick test, which
discards many of the nonqualifying values. But the qualifying values definitely pass the
test, although some values which actually do not satisfy the search requirement may also
pass it accidentally. Such values are called “false hits” or “false drops.” The signature
of a value is a hash-coded bit string of length k with m bit set to one, stored in the
“signature file” (Faloutsos, 1985, 1992). The signature of an element containing some
values is formed by superimposing the signatures of these values. The following figure
depicts the signature generation and comparison process of an element containing three
values, say “SGML,” “database” and “information.”

When a query arrives, the element signatures (stored in a signature file) are scanned
and many nonqualifying elements are discarded. The rest are either checked (so that the
“false drops” are discarded) or they are returned to the user as they are. Concretely, a
query specifying certain values to be searched for will be transformed into a query
signature sq in the same way as for the elements stored in the database. The query
signature is then compared to every element signature in the signature file. Three
possible outcomes of the comparison are exemplified in Figure 3:
1. the element matches the query; that is, for every bit set to 1 in sq, the corresponding

bit in the element signature s is also set (i.e., s ¼ sq = sq) and the element really contains
the query word;

Figure 4. Illustration for Path File

letter/data

letter/greeting
letter/body/para

letter/closing
letter/sig

…
…

binary file: path file:

Figure 5. Signature Generation and Comparison

 text: ... SGML ... databases ... information ...

representat ive word s ignature:

SGML

database

information

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature (OS)

½� ���

queries:

SGML

XML
informatik

query signatures :

010 000 100 110

011 000 100 100
110 100 100 000

matchin results:

match with OS

no match wi th OS
false drop

60 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. the element doesn’t match the query (i.e., s ¼ sq � sq); and
3. the signature comparison indicates a match but the element in fact does not match

the search criteria (false drop). In order to eliminate false drops, the elements must
be examined after the element signature signifies a successful match.

The purpose of using a signature file is to screen out most of the nonqualifying
elements. A signature failing to match the query signature guarantees that the corre-
sponding element can be ignored. Therefore, unnecessary element accesses are pre-
vented. Signature files have a much lower storage overhead and a simple file structure
than inverted indexes.

The above filtering idea can be used to support the path-oriented queries by
establishing path signatures in a similar way. First, we define the concept of tag trees.

Definition 1 (tag trees): Let d denote a document. A tag tree for d, denoted Td, is a tree,
where there is a node for each tag appearing in d and an edge (nodea, nodeb) if nodeb
represents a direct sub-element of nodea.

Based on the concept of tag trees, we can define path signatures as follows.
Definition 2 (path signature): Let root � n1 �... � nm be a path in a tag tree. Let sroot,

si (i = 1, ..., m) be the signatures for root and ni (i = 1, ..., m), respectively.

The path signature of nm is defined to be Psm = sroot ½ s1 ½ ... ½ sm.

Example 1
Consider the tree for the document shown in Figure 3(a). Removing all the leave

nodes from it (a leaf always represents the text of an element), we will obtain the tag tree
for the document shown in Figure 3(a). If the signatures assigned to ‘letter,’ ‘body’ and
‘pare’ are sletter = 011 001 000 101, sbody = 001 000 101 110 and spara = 010 001 011 100,
respectively, then the path signature for ‘para’ is Pspara = sletter ½ sbody ½ spara = 011001111111.

According to the concept of the path signatures, we can evaluate a path-oriented
query as follows:
1. Assign each element name appearing in the path of the query a signature using the

same hash function as for those stored in the path signature file.
2. Superimpose all these signatures to form a path signature of the query.
3. Scan the path signature file to find the matching signatures.
4. For each matching signature, check the associated path. If the path really matches,

the corresponding page of the binary file will be accessed to check whether the
query predicate is satisfied.

Compared to the path file, the path signature file has the following advantages:
i) If the paths (instead of the path signatures) are stored in a separate file, the path

matching is more time-consuming than the path signatures. In the worst-case, O(n)
time is required for a path matching, where n represents the length of the path (or
the number of element names involved in a path). Assume that the average length
of element names is w and each letter is stored as a bit string of length l. The time
complexity of a path matching is then O(wºlºn). But for a path signature matching,

Building Signature-Trees on Path Signatures in Document Databases 61

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

only O(F) time is required, where F is the length of a path signature. In the terms
of Christodoulakis and Faloutsos (1984), F is on the order of O(mºn/ln2), where m
represents the number of 1s in a path signature (bit string). (Here, we regard each
path as a “block” (Christodoulakis & Faloutsos, 1984), which is a set of words
whose signatures will be superimposed together. Thus, the size of a block is the
length of a path.) In general, wºl � m/ln2. Therefore, some time can be saved using
the path signatures instead of the paths themselves.

ii) We can organize all the path signatures into a pat-tree. In this way, the scanning
of the path signatures can be expedited tremendously.

SIGNATURE-TREES ON PATH SIGNATURES
If a path signature file is large, the amount of time elapsed for scanning it becomes

significant. Especially, the binary searching technique cannot be used to speed-up the
searching of such a file since path signatures work only as an inexact filter. As a counter
example, consider the following simple binary tree, which is constructed for a path
signature file containing only three signatures (see Figure 6).

Assume that s = 000010010100 is a signature to be searched. Since s1 > s, the search
will go left to s2. But s2 does not match s. Then, the binary search will return a ‘nil’ to
indicate that s cannot be found. However, in terms of the definition of the inexact
matching, s3 matches s. For this reason, we try another tree structure, the so-called
signature index over path signatures, and change its search strategy in such a way that
the behavior of signatures can be modeled. In the following, we first describe how to build
a signature-tree. Then, we discuss how to establish an index for path signatures using
signature-trees. Finally, we discuss how to search a signature-tree.

Definition of Signature-Trees
A signature-tree works for a signature file is just like a trie (Knuth, 1973; Morrison,

1968) for a text. But in a signature-tree, each path is a signature identifier which is not a
continuous piece of bits, which is quite different from a trie in which each path
corresponds to a continuous piece of bits.

Consider a signature si of length m. We denote it as si = si[1] si[2] ... si[m], where each
si[j] ± {0, 1} (j = 1, ..., m). We also use si(j1, ..., jh) to denote a sequence of pairs w.r.t. si:
(j1, si[j1])(j2, si[j2]) ... (jh, si[jh]), where 1 � jk £ m for k ± {1, ..., h}.

Definition 3 (signature identifier): Let S = s1.s2sn denote a signature file. Consider
si (1 � i � n). If there exists a sequence: j1, ..., jh such that for any k � i (1 � k � n) we

010 000 100 110 100 010 010 100

010 100 011 000���������������������� � ��������������������� 000010010100

path signature to be searched

�����������
��

�����������
���������

s1

s2 s3

s

Figure 6. A Counter Example

62 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have si(j1, ..., jh) � sk(j1, ..., jh), then we say si(j1, ..., jh) identifies the signature si or say
si(j1, ..., jh) is an identifier of si w.r.t. S.

For example, in Figure 6(a), s6(1, 7, 4, 5) = (1, 0)(7, 1)(4, 1)(5, 1) is an identifier of s6
since for any i � 6 we have si(1, 7, 4, 5) � s6(1, 7, 4, 5). (For instance, s1(1, 7, 4, 5) = (1, 0)(7,
0)(4, 0)(5, 0) � s6(1, 7, 4, 5), s2(1, 7, 4, 5) = (1, 1)(7, 0)(4, 0)(5, 1) � s6(1, 7, 4, 5) and so on.
Similarly, s1(1, 7) = (1, 0)(7, 0) is an identifier for s1 since for any i � 1 we have si(1, 7) �
s1(1, 7).)

In the following, we’ll see that in a signature-tree each path corresponds to a
signature identifier.

Definition 4 (signature-tree): A signature-tree for a signature file S = s1.s2sn, where
si � sj for i � j and |sk| = m for k = 1, ..., n, is a binary tree T such that:

1. For each internal node of T, the left edge leaving it is always labeled with 0 and the
right edge is always labeled with 1.

2. T has n leaves labeled 1, 2, ..., n, used as pointers to n different positions of s1, s2
... and sn in S.

3. Each internal node is associated with a number which tells how many bits to skip
when searching.

4. Let i1, ..., ih be the numbers associated with the nodes on a path from the root to a
leaf labeled i (then, this leaf node is a pointer to the ith signature in S). Let p1, ...,
ph be the sequence of labels of edges on this path. Then, (j1, p1) ... (jh, ph) makes up
a signature identifier for si, si(j1, ..., jh).

Example 2
In Figure 7(b), we show a signature-tree for the signature file shown in Figure 6(a).

In this signature-tree, each edge is labeled with 0 or 1 and each leaf node is a pointer to
a signature in the signature file. In addition, each internal node is marked with an integer
(which is not necessarily positive) used to calculate how many bits to skip when
searching. Consider the path going through the nodes marked 1, 7 and 4. If this path is
searched for locating some signature s, then three bits of s: s[1], s[7] and s[4] will be
checked at that moment. If s[4] = 1, the search will go to the right child of the node marked
“4.” This child node is marked with 5 and then the 5th bit of s: s[5] will be checked.

Figure 7. A Path Signature FIle and its Signature Tree

011 001 000 101
111 011 001 111
111 101 010 111
011 001 101 111
011 101 110 101
011 111 110 101
011 001 111 111
111 011 111 111

s1.
s2.
s3.
s4.
s5.
s6.
s7.
s8.

�������
�������

��
1

�������
���������7

�������
��������4

������
������

�
8

�������
���������4

������
�������7

������
������

�
5

���������
��������

��
��3.

��������
��������

�
�
1.

��������
��������

��
��
���������

�
�
� 4.

��������
��������

�
�
���������

��
��
�� 7.

��������
��������

�
� 2.

���������
���������

��
��8.

��������
��������

�
�
���������

��
��
�� 6.

���������
���������

��
��5.

����
������

��
��

���������������
���������������

��
��
�����������
�����������

������
��������

�
�
������
������

���
���

��������
��������

�
�
�����
�����

�
��

����
����

��
��
�������
�������

��
�
����
����

��
�

������
������

�
�
����
����

������
����

0

0

0 0

0 0

0

1

11

11

1 1

�������
������

(a) (b)

Building Signature-Trees on Path Signatures in Document Databases 63

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

See the path consisting of the dashed edges in Figure 7(b), which corresponds to
the identifier of s6: s6(1, 7, 4, 5) = (1, 0)(7, 1)(4, 1)(5, 1). Similarly, the identifier of s3 is s3(1,
4) = (1, 1)(4, 1) (see the path consisting of thick edges).

In the next subsection, we discuss how to construct a signature-tree for a signature
file.

Construction of Signature-Trees
Below we give an algorithm to construct a signature-tree for a signature file, which

needs only O(N) time, where N represents the number of signatures in the signature file.
At the very beginning, the tree contains an initial node: a node containing a pointer

to the first signature.
Then, we take the next signature to be inserted into the tree. Let s be the next

signature we wish to enter. We traverse the tree from the root. Let v be the node
encountered and assume that v is an internal node with sk(v) = i. Then, s[i] will be checked.
If s[i] = 0, we go left. Otherwise, we go right. If v is a leaf node, we compare s with the
signature s0 pointed by v. s cannot be the same as v since in S there is no signature which
is identical to anyone else. But several bits of s can be determined, which agree with s0.
Assume that the first k bits of s agree with s0; but s differs from s0 in the (k + 1)th position,
where s has the digit b and s0 has 1 - b. We construct a new node u with sk(u) = k + 1 and
replace v with u. (Note that v will not be removed. By “replace,” we mean that the position
of v in the tree is occupied by u. v will become one of u’s children.) If b = 1, we make v
and the pointer to s be the left and right children of u, respectively. If b = 0, we make v
and the pointer to s be respectively the right and left children of u.

The following is the formal description of the algorithm.

Algorithm sig-tree-generation(file)
begin

construct a root node r with sk(r) = 1; /*where r corresponds to the first signature
s1 in the signature file*/

for j = 2 to n do
call insert(sj);

end

Procedure insert(s)
begin

stack � root;
while stack not empty do

1 {v � pop(stack);
2 if v is not a leaf then
3 {i � sk(v);
4 if s[i] = 1 then {let a be the right child of v; push(stack, a);}
5 else {let a be the left child of v; push(stack, a);}
6 }
7 else (*v is a leaf.*)
8 {compare s with the signature s0 pointed by p(v);
9 assume that the first k bit of s agree with s0;

64 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

10 but s differs from s0 in the (k + 1)th position;
11 w � v; replace v with a new node u with sk(u) = k + 1;
12 if s[k + 1] = 1 then

 make s and w be respectively the right and left
 children of u

13 else make s and w be the right and left children of u, respectively;}
14 }
end

In the procedure insert, stack is a stack structure used to control the tree traversal.
We trace the above algorithm against the signature file shown in Figure 8.
In the following, we prove the correctness of the algorithm sig-tree-generation. To

this end, it should be specified that each path from the root to a leaf node in a signature-
tree corresponds to a signature identifier. We have the following proposition:

Proposition 1: Let T be a signature-tree for a signature file S. Let P = v1.e1 ... vg-1.eg-1.vg
be a path in T from the root to a leaf node for some signature s in S, i.e., p(vg) = s.
Denote ji = sk(vi) (i = 1, ..., g - 1). Then, s(j1, j2, ..., jg-1) = (j1, b(e1)) ...(jg-1, b(eg-1))
constitutes an identifier for s.

Proof. Let S = s1.s2sn be a signature file and T a signature-tree for it. Let P = v1e1 ... vg-
1eg-1vg be a path from the root to a leaf node for si in T. Assume that there exists
another signature st such that st(j1, j2, ..., jg-1) = si(j1, j2, ..., jg-1), where ji = sk(vi) (i =
1, ..., g - 1). Without loss of generality, assume that t > i. Then, at the moment when
st is inserted into T, two new nodes v and v’ will be inserted as shown in Figure 9(a)
or (b) (see lines 10-15 of the procedure insert). Here, v’ is a pointer to st and v is
associated with a number indicating the position where p(vt) and p(v’) differs.

It shows that the path for si should be v1.e1 ... vg-1.e.ve’.vg or v1.e1 ... vg-1.e.ve”.vg,
which contradicts the assumption. Therefore, there is no other signature st with st(j1, j2,
..., jn-1) = (j1, b(e1)) ...(jn-1, b(en-1)). So si(j1, j2, ..., jn-1) is an identifier of si.

The analysis of the time complexity of the algorithm is relatively simple. From the
procedure insert, we see that there is only one loop to insert all signatures of a signature

 insert s1

�����
�����
�����������
�����
��
�

����������������
�

�
�

�������
�������

������
������
���������

��������
��
��1.

�������������
1������

������
�������

�������
��
��1.

�����
�����
������

������
�
� 2.

��������
�

�
����
���� ��������

��
��

����
����

����������
�����

�
1������

������
�������

�������
��
��

1.

�������������������
2 .

��������
��

�
����
���� ��������

��
��

����
���������

�����
�����
������4

�����������������
3.

�������������� ������������

�����������
1

���������������������
2.

��������
�

��
����
���� ��������

��
��

������
�����������

�����
������
��������4

��������������������
3 .

�������� ������ ���������������
�������������������

1.

�����
�����
�����
������7

�������������������
4.

������������� ����
����
��������

�����
�����
�����
������

1

�����������������������
2.

��������
�

�
����
���� ����������

��
��

������
�����������

�����
������
������

��
4

�������������������
3.

������������� ���������������
�������������������

1 .

����
����
�����
�������7��������������� ���������������

������
������
�������

�������
��
��4

�����
�����
������
��������

4 �����
�����
��������

�������
��
��5 .

���
���
�����
���

������ ���
���
��
��
���
���

�������

�����
�����
�����
������

1

�����������������
2.

��������
��

��
����
���� ����������

�
��

������
�����������

�����
�����
�����

�
4 �����

�����
������
������

��
�������

�
�

3.

������������� �������������
��������������������

1.

������
������
������
������

�
�7������������� ��������������

������
������
�������

�������
��
��4

�����
�����
������
��������

4
����
����
������
����

������ ���
���
��
��
���
���
�������

������
������
�������

�������
��
��5 .

������������
������

�
5 �����

�����
��������

�������
�
� 6 .

���
���
�
����
��
�
��
�� ���������

�
�
��
��

�����
�����
������
������

��
��1

�����
�����
��������

�������
�
� 2.

����
����

������
����

����� ����
����
����
���

�� �������
�������������

4 ������
������
�������

�������
��
��3.

���
���
��
��
��
��

����� ���
�����
���
���
����
��
���
���������

������
�������

�������
��
��1.

�������������
7

���
��������

��
�
���
��� ���������

�
��
���
���������

������
������
������

�
4��������� ����� ��������������

�����������������
5

�����
�����
�����
������5

�������������������
6 .

������������� ���
���
����������

�������������������
4.

�����
�����
������
��������8

���������������������
7.

������������ ���
���
������������

�����
�����
�����
������

1
����
����

��
��

����
����

��������� ���
����
���
���

�
�

���������
��������� ������

������
������
������

�
4������
������
�������

�������
��
��3.

��������
�

��
��
�� ��������

��
���
���
���������

������
�������

�������
��
��

1 .

�����
�����
�����
�����

�
7������������� �������������������

������
������
�������4����

����
�����

����
��������� ����

����
����
���
����

�����
�����
��������

�������
�
�5

�����
�����
������
��������

5
������
������
�������

�������
�
� 6.

���
���
�����
���

����� ����
����
�����
���

������
�����
�����
��������

�������
�
� 4.

�����
�����
������
��������

8
������
������
�������

�������
�
� 7.

����
����
�����
���

����� ����
����
������
����

������� �������������������
2.

�����
�����
������
������

��
7

���������������������
8.

����������� ����
����
�����������

insert s2
�����
�����
�����������
�����
��
�

�������������������
��

�
�

��������
��������

insert s3

������
������
��������������
������
����
��

����������������
�

�
�

�������
�������

insert s4
��������������������
������
�������������������� �������� insert s5

�� ��������

insert s6���������������������������������� �������� insert s7�� �������� insert s8
�� ��������

Figure 8. Sample Trace of Signature Tree Generation

Building Signature-Trees on Path Signatures in Document Databases 65

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

file into a tree. At each step within the loop, only one path is searched, which needs at
most O(m) time. (m represents the length of a signature.) Thus, we have the following
proposition:

Proposition 2: The time complexity of the algorithm sig-tree-generation is bounded by
O(N), where N represents the number of signatures in a signature file.

Proof. See the above analysis.

Searching of Signature-Trees
Now we discuss how to search a signature-tree to model the behavior of a signature

file as a filter. Let sq be a query signature. The i-th position of sq is denoted as sq(i). During
the traversal of a signature-tree, the inexact matching is defined as follows:
i) Let v be the node encountered and sq (i) be the position to be checked.
ii) If sq (i) = 1, we move to the right child of v.
iii) If sq (i) = 0, both the right and left child of v will be visited.

In fact, this definition corresponds to the signature matching criterion.
To implement this inexact matching strategy, we search the signature-tree in a

depth-first manner and maintain a stack structure stackp to control the tree traversal.

Algorithm Signature-Tree-Search
input: a query signature sq;
output: set of signatures which survive the checking;

1. S � Æ.
2. Push the root of the signature-tree into stackp.
3. If stackp is not empty, v � pop(stackp); else return(S).
4. If v is not a leaf node, i � sk(v).
5. If sq (i) = 0, push cr and cl into stackp; (where cr and cl are v’s right and left child,

respectively) otherwise, push only cr into stackp.
6. Compare sq with the signature pointed by p(v). /*p(v) - pointer to the block

signature*/
If sq matches, S � S « {p(v)}.

7. Go to (3).

Figure 9. Inserting a Node ‘v’ into ‘T’

������������������
v1

�����������
����������

�
� vg

������������
������������

��
�� vg-1

���������
���������

��
�� v

��
�
�����
�����

�����������
��������

��
�
��������
��������e

e’ �����������
����������

��
�� v’

������������� �����������e’’

������������������
v1

�����������
����������

�
� vg

�������������
������������

��
�� vg-1

����������
��

�������
�������
��

v

��
��
������
������
�����������

������
��

�
��������
��������e

e’ �����������
����������

�
�v’

����������� ����������e’’

66 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following example helps to illustrate the main idea of the algorithm.

Example 3
Consider the signature file and the signature-tree shown in Figure 7(a) once again.
Assume sq = 000 100 100 000. Then, only part of the signature-tree (marked with thick

edges in Figure 10) will be searched. On reaching a leaf node, the signature pointed by
the leaf node will be checked against sq. Obviously, this process is much more efficient
than a sequential searching since only three signatures need to be checked while a
signature file scanning will check eight signatures. For a balanced signature-tree, the
height of the tree is bounded by O(log2N), where N is the number of the leaf nodes. Then,
the cost of searching a balanced signature-tree will be O(Oºlog2N) on average, where O
represents the number of paths traversed, which is equal to the number of signatures
checked. Let t represent the number of bits which are set in sq and checked during the
search. Then, l = O(N/2t). It is because each bit set to 1 will prohibit half of a subtree from
being visited if it is checked during the search. Compared to the time complexity of the
signature file scanning O(N), it is a major benefit. We will discuss this issue in the next
section in more detail.

Time Complexity
In this section, we compare the costs of signature file scanning and signature-tree

searching. First, we show that a signature-tree is balanced on the average. Based on this,
we analyze the cost of a signature-tree search.

Analysis of Signature-Trees
Let Tn be a family of signature-trees built from n signatures. Each signature is

considered as a random bit string containing 0s and 1s. We assume that the probability
of appearances of 0 and 1 in a string is equal to p and q = 1 - p, respectively. The occurrence
of these two values in a bit string is independent of each other.

To study the average length of paths from the root to a leaf, we check the external
path length Ln - the sum of the lengths of all paths from the root to all leaf nodes of a
signature-tree in Tn. Note that in a signature-tree, the n signatures are split randomly into

����������
����������
����������

��
1

����������
����������

��
7

����������
����������

��
4

����������
����������

��
8

����������
����������

��
4

����������
����������

��
7

����������
������������5

������������
�����������

��
�� 3.

�������������
������������

�
� 1.

��������������
�������������

��
�� 4.

���������������
��������������

��
�� 7.

�������������
������������

��
�� 2.

��������������
�������������

��
�� 8.

��������������
�������������

�
� 6.

���������������
��������������

��
�� 5.

��
��

��

����������������������������
����������������������������
����������������������������

���
���

��

������������������������
������������������������
������������������������

��
�
����������������
����������������

���
����

�����������������
�����������������

��
��
����������
����������

���
���

����

�����������
�����������
�����������

��

��

��������
��������
��������

��

��

������
������
������

��
��
����������
����������

���
���

����������
����������

�
�
�����
�����

�
��

���������
���������

���

���

��������
��������
��������

����

���

�������������
�������������
�������������

0

0

0 0

0 0

0

1

11

11

1
1

Figure 10. Signature Tree Search

Building Signature-Trees on Path Signatures in Document Databases 67

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the left subtree and the right subtree of the root. Let X denote the number of signatures
in the left subtree. Then, for X = k, we have the following recurrence:

Ln =
Ñ
Ð
Ï

��� �

nkk
n k LLn knk

,0forundefined,
0,for,

where Lk and Ln-k represent the external path length in the left and right subtrees of the
root, respectively. Note that a signature-tree is never degenerate (i.e., k = 0 or k = n). So
one-way branching on internal nodes never happens. The above formula is a little bit
different from the formula established for the external path length of a binary tree:

Bn = n + Bk + Bn-k, for all k = 0, 1, 2, ..., n,

where Bk represents the sum of the lengths of all paths from the root to all leaf nodes of
a binary tree having k leaf nodes.

According to Knuth (1973), the expectation of Bn is:

EB0 = EB1 = 0,

EBn = � �,
0

È

�
� �ÚÚÛ

Ù
ÊÊË

Én

k
knk

knk BBqp
k
n

n > 1.

When p = q = 0.5, we have:

EBn = � � k

n

k

k k
k
n

�
 �ÚÚÛ

Ù
ÊÊË

É
�È 1

2 21
1 .

For large n the following holds:

EBn = nlog2n + n[L
J

 + 2
1

 + 1G (log2n)] - 2
1

L + 2G (log2n),

where L = loge2, J = 0.577... is the Euler constant, G1(x) and G2(x) are two periodic functions
with small amplitude and mean zero (see Knuth, 1973, for a detailed discussion).

In a similar way to Knuth (1973), we can obtain the following formulae:

EL0 = EL1 = 0,

ELn = n(1 - pn - qn) + � �,
0

È

�
� �ÚÚÛ

Ù
ÊÊË

Én

k
knk

knk BBqp
k
n

, n > 1.

68 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

When p = q = 0.5, we have:

ELn = � � k

kn

k

k k
k
n

�

�

 �ÚÚÛ

Ù
ÊÊË

É
�È 1

1

2 21
21 = EBn - n + dn,1,

where Gn,1 represents the Kronecker delta function (Riordan, 1968) which is 1 if n = 1, 0
otherwise.

From the above analysis, we can see that for large n we have the following:

ELn = O(nlog2n).

This shows that the average value of the external path length is asymptotically equal
to nlog2n, which implies that a signature-tree is normally balanced.

Time for Searching a Signature-Tree
As shown in Example 4, using a balanced signature-tree, the cost of scanning a

signature file can be reduced from O(N) to O(N/2t), where t represents the number of some
bits which are set in sq and occasionally checked during the search. If t = 1, only half of
the signatures will be checked. If t = 2, one-quarter of the signatures will be checked, and
so on.

For a balanced signature-tree, the average height of the tree is O(log2N). During a
search, if half of the sq’s bits checked are set to 1. Then, t = O(log2N)/2. Accordingly, the
cost of a signature file scanning can be reduced to O(N/2(logN)/2). If one-third of the sq’s
bits checked are set to 1, the cost of a signature file scanning can be reduced to O(N/
2(logN)/3).

Table 1 shows the calculation of this cost for different signature file sizes.
Figure 11 is the pictorial illustration of Table 1.
This shows that the searching of signature-trees outperforms the searching of

signature files significantly.

SIGNATURE-TREE MAINTANENCE
In this section, we address how to maintain a signature-tree. First, we discuss the

case that a signature-tree can entirely fit in main memory. Then, we discuss the case that
a signature-tree cannot entirely fit in main memory.

Table 1. Cost Calculation

N 2000 4000 6000 8000 10000 12000

N/2(logN)/2 44.68 63.36 77.76 89.44 100.00 109.56

N/2(logN)/3 159.36 251.92 330.10 399.98 463.90 524.13

Building Signature-Trees on Path Signatures in Document Databases 69

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Maintenance of Internal Signature-Trees
An internal signature-tree refers to a tree that can fit entirely in main memory. In this

case, insertion and deletion of a signature into a tree can be done quite easily as discussed
below.

When a signature s is added to a signature file, the corresponding signature-tree
can be changed by simply running the algorithm insert() once with s as the input. When
a signature is removed from the signature file, we need to reconstruct the corresponding
signature-tree as follows:
i) Let z, u, v and w be the nodes as shown in Figure 12(a) and assume that the v is a

pointer to the signature to be removed.
ii) Remove u and v. Set the left pointer of z to w. (If u is the right child of z, set the right

pointer of z to w.)

The resulting signature-tree is as shown in Figure 12(b).
From the above analysis, we see that the maintenance of an internal signature-tree

is an easy task.

Maintenance of External Signature-Trees
In a database, files are normally very large. Therefore, we have to consider the

situation where a signature-tree cannot fit entirely in main memory. We call such a tree
an external signature-tree (or an external structure for the signature-tree). In this case,
a signature-tree is stored in a series of pages organized into a tree structure as shown
in Figure 13, in which each node corresponds to a page containing a binary tree.

Figure 11. Time Complexity of Signature File Scanning and Signature Tree Searching

signature tree searching

signature file scanning

2000
4000
6000
8000

10000
12000

0
2000 4000 6000 8000 10000 12000 N

number of signature
comparisons

with t = O(log 2 N)/2

signature tree searching
with t = O(log 2 N)/3

Figure 12. Illustration for Deletion of a Signature

�����������

���
���
����
������

��������������������������
��

�������
�������
��

��
��
���������
�����������

�

�������
�������
�������

��

�

���������
���������
��������������������������
�����������������
�����������������

���������
���������
���������

��
�

����������
��������������������������

����������������
���������
���������

z
u

v w

�����������
����
����
�����
�����

��
�

��
��������
��������

����������������
����������������

���������
���������

��
��

�����������
����������������������������

�����������������
�����������������

���������
���������
���������

z

w

�����
����� �����

����� �����
�
�
�
��

(a) (b)

70 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Formally, an external structure ET for a signature-tree T is defined as follows. (To
avoid any confusion, we will, in the following, refer to the nodes in ET as the page nodes
while the nodes in T as the binary nodes or simply the nodes.)
1. Each internal page node n of ET is of the form: bn(rn, an1, ...,), where bn represents

a subtree of T, rn is its root and an1, ..., are its leaf nodes. Each internal node u of bn
is of the form: <v(u), l(u), r(u)>, where v(u), l(u) and r(u) are the value, left link and
right link of u, respectively. Each leaf node of bn is of the form: <v(), lp(), rp()>, where
v() represents the value of , and lp() and rp() are two pointers to two pages
containing the left and right subtrees of, respectively.

2. Let m be a child page node of n. Then, m is of the form: bm(rm, am1, ...,), where bm
represents a binary tree, rm is its root and am1, ..., are its leaf nodes. If m is an internal
page node, am1, ..., will have the same structure as an1, ..., described in (1). If m is
a leaf node, each = p(s), the position of some signature s in the signature file.

3. The size |b| of the binary tree b (the number of nodes in b) within an internal page
node of ET satisfies:

|b| � 2k,

where k is an integer.
4. The root page of ET contains at least a binary node and the left and right links

associated with it.

If 2k-1 � |b| � 2k holds for each node in ET, it is said to be balanced; otherwise, it is
unbalanced. However, according to the earlier analysis, an external signature-tree is
normally balanced, i.e., 2k-1 � |b| � 2k holds for almost every page node in ET.

As with a B+-tree, insertion and deletion of page nodes begin always from a leaf
node. To maintain the tree balance, internal page nodes may split or merge during the
process. In the following, we discuss these issues in great detail.

Insertion of Binary Nodes
Let s be a signature newly inserted into a signature file S. Accordingly, a node as

will be inserted into the signature-tree T for S as a leaf node. In effect, it will be inserted
into a leaf page node m of the external structure ET of T. It can be done by taking the binary
tree within that page into main memory and then inserting the node into the tree. If for

���������
�����

��
��������������������

���������
�����

�� ���������
�����

�� ����
����
�����
�����

�� �������
����

��
������������
��
�� ��
���������
�����������

��
����������
����������

��
��

�������
�������

��
�
�����
�����

�
�

������
������

���
��
��
��

��
��
��
��

�������
������������������

������� ���������������� �������

�
��
����
����

�
��

����
������

��
����
����

��
��

����
����

��
��
���
���

��
��

����
����

���������������������
��
��
��������������������

��
��
��
��

�������
����������������

������� ���������������� ���������

��
��
�����
�����

��
��

�����
�������

��
�����
�����

��
��

����
����

��
��
����
����

�
��
���
���

����������������������
��
��
���������������������

��
��
��
��

�������
����������������

����� �������������� �������

��
��
����
����

��
��

�����
�������

��
�����
�����

��
��

����
����

��
��
���
���

��
��

����
����

���������������������
��
��
��������������������

��
��
��
��

���������
����������������

����� ���������������� ���������

��
��
�����
�����

��
��

�����
�������

�
�����
�����

��
�

���
���

�
��
���
���

��
��

����
����

���������������������
��
��
��������������������

��
��
��
��

���������
������������

��������� �������������� �������

��
�
����
����

��
�

����
������

��
�����
�����

��
��

����
����

��
��
���
���
��

��
�����
�����

���������������������
��
��
��������������������

��
��
��
��

���������
������������

������� �������������� �������

��
��
�����
�����

��
��

�����
������

��
����
����

�
��

����
����

��
�
���
���

��
�

����
����

����������������������
��
��
���������������������

�
�
�
�

�������
����������������

��������� ������������ �����

��
��
�����
�����

��
��

����
������

��
����
����

��
��

�����
�����

��
��
����
����

��
�

����
����

����������������������
��
��
���������������������

��
��
��
��

�������
��������������

������� ���������������� ���������

�
��
����
����

�
��

�����
�������

��
����
����

��
��

�����
�����

��
��
����
����

��
��

����
����

���������������������
�
�
���������������������

��
��
��
��

�
�

�

��
��
��
��

�
�

�

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

��
��

��

�����������������������������
�����������������������������
�����������������������������
�����������������������������

��

��

�������
�������
�������
�������

�

��

��������
��������
��������

��

��

������������������������������
������������������������������
������������������������������

�
�

�

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

�
�

�

��
��
��
��

Figure 13. A Sample External Signature Tree

Building Signature-Trees on Path Signatures in Document Databases 71

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the binary tree b in m we have |b| > 2k, the following node-splitting will be conducted.
1. Let bm(rm, am1, ...,) be the binary tree within m. Let rm1 and rm2 be the left and right

child node of rm, respectively. Assume that bm1(rm1, am1, ...,) (ij < im) is the subtree
rooted at rm1 and bm2(rm1, , ...,) is rooted at rm2. We allocate a new page m’ and put
bm2(rm1, , ...,) into m’. Afterwards, promote rm into the parent page node n of m and
remove bm2(rm1, , ...,) from m.

2. If the size of the binary tree within n becomes larger than 2k, split n as above. The
node-splitting repeats along the path bottom-up until no splitting is needed.

Deletion of Binary Nodes
When a node is removed from a signature-tree, it is always removed from the leaf

level as discussed in the above subsection. Let a be a leaf node to be removed from a
signature-tree T. In effect, it will be removed from a leaf page node m of the external
structure ET for T. Let b be the binary tree within m. If the size of b becomes smaller than
2k-1, we may merge it with its left or right sibling as follows.
1. Let m’ be the left (right) sibling of m. Let bm(rm, am1, ...,) and bm’(rm’, am’1, ...,) be two

binary trees in m and m’, respectively. If the size of bm’ is smaller than 2k-1, move
bm’ into m and afterwards eliminate m’. Let n be the parent page node of m and r be
the parent node of rm and rm’. Move r into m and afterwards remove r from n.

2. If the size of the binary tree within n becomes smaller than 2k-1, merge it with its left
or right sibling if possible. This process repeats along the path bottom-up until the
root of ET is reached or no merging operation can be done.

Note that it is not possible to redistribute the binary trees of m and any of its left
and right siblings due to the properties of a signature-tree, which may leave an external
signature-tree unbalanced. According to our analysis, however, it is not a normal case.

Finally, we point out that for an application where the signature files are not
frequently changed, the internal page nodes of an ET can be implemented as a heap
structure. In this way, a lot of space can be saved.

CONCLUSION
In this chapter, a document management system is introduced. First, the system

architecture and the document storage strategy have been discussed. Then, a new
indexing technique, path signature, has been proposed to speed up the evaluation of
the path-oriented queries. On the one hand, path signatures can be used as a filter to get
away non-relevant elements. On the other hand, the technique of signature-trees can be
utilized to establish index over them, which make us find relevant signatures quickly. As
shown in the analysis of time complexity, high performance can be achieved using this
technique.

REFERENCES
Abiteboul, S., Quass, D., McHugh, J., Widom, J. & Wiener, J. (1996). The Lorel Query

Language for semi-structured data. Journal of Digital Libraries, 1(1).

72 Chen & Huck

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bosak, J. (1997, March). Java, and the future of the Web. Available online at: http://
sunsite.unc.edu/pub/sun-info/standards/xml/why/xmlapps.html.

Chamberlin, D., Clark, J., Florescu, D., Robie, J., Simeon, J. & Stefanescu, M. (2001).
Xquery 1.0: An XML Query Language. Technical Report, World Wide Web
Consortium, Working Draft 07.

Chen, Y. & Huck, G. (2001). On the evaluation of path-oriented queries in document
databases. Lecture Notes in Computer Science, 2113, 953-962.

Christodoulakis, S. & Faloutsos, C. (1984). Design consideration for a message file
server. IEEE Transactions on Software Engineering, 10(2), 201-210.

Christophides, V., Cluet, S. & Simeon, J. (2000). On wrapping query languages and
efficient XML integration. Proceedings of the ACM SIGMOD Conference on
Management of Data, 141-152.

Deutsch, A., Fernandez, Florescu, D., Levy, A. & Suciu, D. (1988, August). XML-QL: A
Query Language for XML. Available online at: http://www.w3.org/TR/NOTE-xml-
ql/.

Faloutsos, C. (1985). Access methods for text. ACM Computing Surveys, 17(1), 49-74.
Faloutsos, C. (1992). Signature files. In Frakes, W.B. & Baeza-Yates, R. (Eds.), Informa-

tion Retrieval: Data Structures & Algorithms. Englewood Cliffs, NJ: Prentice Hall,
44-65.

Florescu, D. & Kossman, D. (1999). Storing and querying XML data using an RDBMS.
IEEE Data Engineering Bulletin, 22(3).

Huck, G., Macherius, I. & Fankhauser, P. (1999). PDOM: Lightweight persistency support
for the Document Object Model. Proceedings of the OOPSLA’99 Workshop: Java
and Databases: Persistence Options, November.

Knuth, D.E. (1973). The Art of Computer Programming: Sorting and Searching. London:
Addison-Wesley.

Marchiori, M. (1998). The Query Languages Workshop (QL’98). Available online at:
http://www.w3.org/TandS/QL/QL98.

Morrison, D.R. (1968). PATRICIA—Practical Algorithm To Retrieve Information Coded
in Alphanumeric. Journal of Association for Computing Machinery, 15(4), 514-
534.

Pixley, T. (2000). Document Object Model (DOM) Level 2 Events Specification Version
1.0. W3C Recommendation.

Riordan, J. (1968). Combinatorial Identities. New York: John Wiley & Sons.
Robie, J., Chamberlin, D. & Florescu, D. (2000). Quilt: An XML query language for

heterogeneous data sources. Proceedings of the International Workshop on the
Web and Databases.

Robie, J., Lapp, J. & Schach, D. (1998). XML Query Language (XQL). Proceedings of W3C
QL’98—The Query Languages Workshop.

Shanmugasundaram, J., Shekita, R., Carey, M.J., Lindsay, B.G., Pirahesh, H. & Reinwald,
B. (2000). Efficiently publishing relational data as XML documents. Proceedings
of the International Conference on Very Large Data Bases (VLDB’00), 65-76.

Shanmugasundaram, J., Tufte, K., Zhang. C., He,. D.J., DeWitt, J. & Naughton, J.F. (1999).
Relational databases for querying XML documents: Limitations and opportunities.
Proceedings of the International Conference on Very Large Data Bases (VLDB’99),
302-314.

Building Signature-Trees on Path Signatures in Document Databases 73

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Suciu, D. & Vossen, G. (2000). Proceedings of the Third International Workshop on the
Web and Databases (WebDB 2000), LNCS. Springer-Verlag.

World Wide Web Consortium. (1998a, February). Extensible Markup Language (XML)
1.0. Available online at: http//www.w3.org/TR/ 1998/REC-xml/19980210.

World Wide Web Consortium. (1998b, December). Extensible Style Language (XML)
Working Draft. Available online at: http/ /www.w3.org/TR/1998/WD-xsl-19981216.

World Wide Web Consortium. (1998c). Document Object Model (DOM) Level 1.
Available online at: http://www.w3.org/TR/ REC-DOM-Level-1/.

Yoshikawa, M., Amagasa, T., Shimura, T. & Uemura, S. (2001). Xrel: A path-based
approach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technology, 1(1).

