Keywords: Tree inclusion, ordered labelled trees, tree matching.

Abstract: In this paper, we discuss an efficient algorithm for the ordered tree inclusion problem, by which it is checked whether a pattern tree (forest) P can be embedded in a target tree (forest) T. The time complexity of this algorithm is bounded by $O(|T| \cdot \log D_P)$, where D_P is the depth of P; and its space overhead is bounded by $O(|T| + |P|)$. This computational complexity is better than any existing algorithm for this problem.

1 INTRODUCTION

Let T be a rooted tree. We say that T is ordered and labeled if each node is assigned a symbol from an alphabet Σ and a left-to-right order among siblings in T is specified. Let v be a node different of root in T with parent node u. Denote by $\text{delete}(T, v)$ the tree obtained from T by removing the node v. The children of v become children of u as illustrated in Fig. 1.

![Figure 1. Illustration for node deletion](image)

Given two ordered labeled trees P and T, called the pattern and the target, respectively. We may ask: Can we obtain pattern P by deleting some nodes from target T? That is, is there a sequence $v_1, ..., v_k$ of nodes such that for

$$T_0 = T \text{ and } T_{i+1} = \text{delete}(T_i, v_{i+1}) \text{ for } i = 0, ..., k - 1,$$

we have $T_k = P$? If this is the case, we say, P is included in T (H. Mannila and K.-J. Räiha, 1990). Such a problem is called the tree inclusion problem.

This problem has been recognized as an important query primitive for XML data and received considerable attention (H. Mannila and K.-J. Räiha, 1990), where a structured document database is considered as a collection of parse trees that represent the structure of the stored texts and the tree inclusion is used as a means of retrieving information from them.

Ordered labeled trees also appear in the natural language processing. As an example, consider querying grammatical structures as illustrated in Fig. 2, which is the parse tree of a natural language sentence (H. Mannila and K.-J. Räiha, 1990).

![Figure 2. The parse tree of a sentence](image)

One might want to locate, say, those sentences that include a verb phrase containing the verb “reads” and after it a noun “report” followed by any adverb. This is exactly the sentences whose parse tree can be obtained by deleting some nodes from the tree shown in Fig. 2. (See Fig. 3 for illustration.)

![Figure 3. An included tree of the parse tree](image)

A third application of the ordered tree inclusion is the video content-based retrieval. According to (Y. Rui et al., 1999), a video can be successfully decomposed into a hierarchical tree structure, in
which each node represents a scene, a group, a shot, a frame, a feature, and so on. Especially, such a tree is an ordered one since the temporal order is very important for video. Some other areas, in which the ordered tree inclusion finds its applications, are the scene analysis, the computational biology (such as RNA structure matching), and the data mining, such as tree mining (M. Zaki, 2002), just to name a few.

In this paper, we discuss an efficient algorithm for this problem.

2 BASIC DEFINITION

We concentrate on labeled trees that are ordered, i.e., the order between siblings is significant. Technically, it is convenient to consider a slight generalization of trees, namely forests. A forest is a finite ordered sequence of disjoint finite trees. A tree T consists of a specially designated node $\text{root}(T)$ called the root of the tree, and a forest $<T_0, ..., T_k>$, where $k \geq 0$. The trees $T_0, ..., T_k$ are the subtrees of the root of T or the immediate subtrees of tree T, and k is the outdegree of the root of T. A tree with the root t and the subtrees $T_1, ..., T_k$ is denoted by $<t; T_1, ..., T_k>$. The roots of the trees $T_1, ..., T_k$ are the children of t and siblings of each other. Also, we call $T_1, ..., T_k$ the sibling trees of each other. In addition, $T_{i,1}, ..., T_{i,k}$ are called the left sibling trees of T_i, and $T_{i,1}$ the immediate left sibling tree of T_i. The root is an ancestor of all the nodes in its subtrees, and the nodes in the subtrees are descendants of the root. The set of descendants of a node v is denoted by $\text{desc}(v)$. A leaf is a node with an empty set of descendants.

Sometimes we treat a tree T as the forest $<T>$. We may also denote the set of nodes in a forest F by $V(F)$. For example, if we speak of functions from a forest G to a forest F, we mean functions mapping the nodes in $V(G)$ onto the nodes in $V(F)$. The size of a forest F, denoted by $|F|$, is the number of the nodes in F. The restriction of a forest F to a node v with its descendants $\text{desc}(v)$ is called a subtree of F rooted at v, denoted by $F[v]$.

Let $F = <T_0, ..., T_k>$ be a forest. The preorder of a forest F is the order of the nodes visited during a preorder traversal. A preorder traversal of a forest $<T_0, ..., T_k>$ is as follows. Traverse the trees $T_0, ..., T_k$ in ascending order of the indices in preorder. To traverse a tree in preorder, first visit the root and then traverse the forest of its subtrees in preorder. The postorder traversal the root is visited after traversing the forest of its subtrees in postorder. We denote the preorder and postorder numbers of a node v by $\text{pre}(v)$ and $\text{post}(v)$, respectively.

Using preorder and postorder numbers, the ancestorship can be easily checked. If there is path from node u to node v, we say, u is an ancestor of v and v is a descendant of u. In this paper, by ancestor (descendant), we mean a proper ancestor (descendant), i.e., $u \neq v$.

Lemma 1 Let v and u be nodes in a forest F. Then, v is an ancestor of u if and only if $\text{pre}(v) < \text{pre}(u)$ and $\text{post}(v) < \text{post}(u)$.

Proof. See Exercise 2.3.2-20 in (D. Knuth, 1969; page 347).

Similarly, we check the left-to-right ordering as follows.

Lemma 2 Let v and u be nodes in a forest F. v is said to be to the left of u if they are not related by the ancestor-descendant relationship and u follows v when we traverse F in preorder. Then, v is to the left of u if and only if $\text{pre}(v) < \text{pre}(u)$ and $\text{post}(v) < \text{post}(u)$.

Proof. The proof is trivial.

In the following, we use \prec to represent the left-to-right ordering. Also, $v \prec v'$ iff $v \prec v'$ or $v = v'$. Furthermore, we extend this ordering with two special nodes $\bot \prec v \prec \top$ for any v in F. The left relatives, $\text{lr}(v)$, of a node $v \in V(F)$ is the set of nodes that are to the left of v and similarly the right relatives, $\text{rr}(v)$, are the set of nodes that are to the right of v.

The following definition is due to (P. Kilpeläinen and H. Mannila, 1995).

Definition 1 Let F and G be labeled ordered forests. We define an ordered embedding (ϕ, G, F) as an injective function $\phi : V(G) \to V(F)$ such that for all nodes $v, u \in V(G)$,

i) $\text{label}(v) = \text{label}(\phi(v))$; (label preservation condition)

ii) v is an ancestor of u iff $\phi(v)$ is an ancestor of $\phi(u)$, i.e., iff $\text{pre}(\phi(v)) < \text{pre}(\phi(u))$ and $\text{post}(\phi(u)) < \text{post}(\phi(v))$; (ancestor condition)

iii) v is to the left of u iff $\phi(v)$ is to the left of $\phi(u)$, i.e., iff $\text{pre}(\phi(v)) < \text{pre}(\phi(u))$ and $\text{post}(\phi(v)) < \text{post}(\phi(u))$. (Sibling condition)
If there exists such an injective function from $V(G)$ to $V(F)$, we say, F includes G, F contains G, F covers G, or say, G can be embedded in F.

Fig. 4 shows an example of an ordered inclusion.

Let P and T be two labeled ordered trees. An embedding ϕ of P in T is said to be root-preserving if $\phi(root(P)) = root(T)$. If there is a root-preserving embedding of P in T, we say that the root of T is an occurrence of P.

![Figure 4](image)

Figure 4: (a) The tree on the left can be included in the tree on the right by deleting the nodes labeled: d, e, and b; (b) the embedding corresponding to (a).

3 ALGORITHM

Now we begin to describe our algorithm. First, we discuss the main idea of the algorithm in 3.1. Then, the formal description of the algorithm is given in 3.2.

3.1 Main Idea

Let $T = (< r; T_1, ..., T_k >) (k \geq 0)$ be a tree and $G = < P_1, ..., P_q >$ ($q \geq 0$) be a forest. We handle G as a tree $P = < p_1; P_1, ..., P_q >$, where p_i represents a virtual node, matching any node in T. Note that even though G contains only one single tree it is considered to be a forest. So a virtual root is added. Therefore, each node in G, except the virtual root, has a parent.

Consider a node v in $G = < P_1, ..., P_q >$ with children $v_1, ..., v_j$. We use a pair $< i, v >$ ($i \leq j$) to represent an ordered forest containing the first i subtrees of v: $< G[v_1], ..., G[v_i] >$. If v is p_i, or a node on the left-most path in P_i, $< i, v >$ is called a left corner of G. Especially, $< i, p_i >$ is a left corner, representing the first i subtrees in G: $P_1, ..., P_i$. In addition, we use $\rho(G)$ to represent the left-most leaf node of G. Then, $< i, \rho(G) >$ (with any $i \geq 0$) or $< 0, v >$ (with any v in G) stands for an empty left corner. We also use $\delta(v)$ to represent a link from a node v to the left-most leaf node in $G[v]$, as illustrated in Fig. 5.

![Figure 5](image)

Figure 5. A pattern tree

Let v' be a leaf node in G. $\delta(v')$ is defined to be a link to v' itself. So in Fig. 5, we have $\delta(v_1) = \delta(v_2) = \delta(v_5) = v_3$. Denote by $\delta^i(v')$ a set of nodes x such that for each $v \in x$, $\delta(v) = v'$. Then, in Fig. 5, We have $\delta^3(v_3) = \{ v_1, v_2, v_5 \}$, $\delta^3(v_4) = \{ v_2 \}$, and $\delta^3(v_5) = \{ v_5 \}$.

Let p_1 be the root of P_1. We have $\rho(G) = \delta(p_1)$.

The outdegree of v in a tree is denoted by $d(v)$ while the height of v is denoted by $h(v)$, defined to be the number of edges on the longest downward path from v to a leaf. The height of a leaf node is set to be 0.

As with (Y. Chen and Y.B. Chen, 2006), we arrange two functions to check the tree inclusion. However, in [4], each function returns an integer j, indicating that the first j subtrees in G can be embedded in a target tree or a target forest while in the new algorithm each function returns a left corner in G which can be embedded in the target. Let T and G represent the set of all trees and the set of all forests, respectively. Then, we use L_g to represent all the left corners in all forests in G. That is:

$$L_g = \cup_{G \in G} L_G$$

The first function is defined as

$$A : T \times G \rightarrow L_g$$

such that for $T \in T$ and $G \in G$, $A(T, G) = < i, v > \in L_g$ with the following properties:

- If $i > 0$ and $v \neq \rho(G)$, it shows that
 - the first i subtrees of $v \in \delta^{-1}(\rho(G)) \cup \{ p_i \}$ can be embedded in T;
 - for any $i' > i$, $< i', v >$ cannot be embedded in T;
 - for any v’s ancestor $u \in \delta^{-1}(\rho(G)) \cup \{ p_i \}$, there exists no $j > 0$ such that $< j, u >$ is able to be embedded in T.

- If $i = 0$ or $v = \rho(G)$, it indicates that no left corner of G can be embedded in T.

In this sense, we say, $< i, v >$ is the highest and widest left corner which can be embedded in T.
We notice that if \(v = p_i \) and \(i > 0 \), it shows that \(P_1, \ldots, P_i \) can be included in \(T \).

Similarly, we define the second function as

\[
B: G \times G \rightarrow L_G
\]
such that for \(G' \in G \) and \(G \in G \), \(B(G', G) = <i, \nu> \in L_G \) is the highest and widest left corner (in \(G \)) which can be embedded in \(G' \). Again, if \(i = 0 \) or \(\nu = \rho(G) \), it shows that no non-empty left corner of \(G \) can be embedded in \(G' \).

If the target is a tree and the pattern is a forest, we call \(A \)-function. If both the target and pattern are forests, we call \(B \)-function. However, during the computation, they will be called from each other.

In the following, we first describe the working process of \(A \)-function in great detail. Then, \(B \)-function is specified.

- \(A \)-function
In \(A(T, G) \), we need to handle two cases.

Case 1: \(G = <P_1> \); or
\[
G = <P_1, \ldots, P_q> (q > 1), \text{ but } |T| \leq |P_1| + |P_2|.
\]

In this case, what we can do is to find whether \(P_1 \) or a highest and widest left corner \(<i, \nu> \) in \(P_1 \) can be included in \(T \). For this purpose, the following checkings should be conducted:

i) If \(i \) is a leaf node, we will check whether \(\text{label}(i) = \text{label}(\delta(p_i)) \), where \(p_i \) is the root of \(P_i \). If it is the case, return \(<1, \text{parent of } \delta(p_i)> \). Otherwise, return \(<0, \delta(p_i)> \).

(Fig. 6 illustrates this case. Since \(T \) contains only a single node, the only left-corner in \(G \), which can possibly be embedded in \(T \) is \(\delta(p_1) \), represented as \(<1, \text{parent of } \delta(p_1)> \).)

Figure 6. Illustration for the execution of \(A() \)

ii) If \(|T| > 1 \), but \(|T| < |P_1| \) and/or \(h(t) < h(p_i) \), we will make a recursive call \(A(T, <P_{i1}, \ldots, P_{i\gamma}>), \) where \(<P_{i1}, \ldots, P_{i\gamma}> \) is a forest of the subtrees of \(p_i \). The return value of \(A(T, <P_{i1}, \ldots, P_{i\gamma}>) \) is used as the return value of \(A(T, G) \).

(Since \(|T| < |P_i| \) and/or \(h(t) < h(p_i) \), \(T \) is not able to embed the whole \(P_i \). So we will check \(T \) against \(<P_{i1}, \ldots, P_{i\gamma}> \) to find the highest and widest left-corner within \(<P_{i1}, \ldots, P_{i\gamma}> \), which can be embedded in \(T \). See Fig. 7 for illustration.)

Figure 7. Illustration for a recursive call within \(A() \)

iii) If \(|T| \geq |P_1| \) and \(h(t) \geq h(p_1) \) (but \(|T| \leq |P_1| + |P_2| \)), we need to further distinguish between two subcases:

- If \(\text{label}(i) = \text{label}(p_i) \), in this case, we will call \(B(<T_1, \ldots, T_k>, <P_{i1}, \ldots, P_{i\gamma}>) \).
- Otherwise, the return value of \(A(T, G) \) is the same as \(<i, \nu> \).

Case 2: \(G = <P_1, \ldots, P_q> (q > 1), \text{ and } |T| > |P_1| + |P_2| \).

In this case, we will call \(B(<T_1, \ldots, T_k>, G) \). Assume that the return value of \(B(<T_1, \ldots, T_k>, G) \) is \(<i, \nu> \). The following checkings will be continually conducted.

iv) If \(\nu \neq p_i \)'s parent, check whether \(\text{label}(i) = \text{label}(\nu) \) and \(i = d(\nu) \). If it is the case, the return value of \(A(T, G) \) is the same as \(<i, \nu> \).

Otherwise, the return value of \(A(T, G) \) will be set to \(<1, \nu \text{ 's parent}> \).

v) If \(\nu = p_i \)'s parent, the return value of \(A(T, G) \) is the same as \(<i, \nu> \).

- \(B \)-function
\(B(G', G) \) is designed to handle the case that both \(G' \) and \(G \) are forests made up of a set of subtrees rooted at nodes that are consecutive siblings in \(T \) and \(P \), respectively. Let \(G' = <T_1, \ldots, T_k> \) and \(G = <P_1, \ldots, P_q> \). Denote by \(t \) the root of \(T_i (i = 1, \ldots, k) \). Denote by \(p_j \) the root of \(P_j (j = 1, \ldots, q) \). In \(B(G', G) \), we will make a series of calls \(A(T_t, <P_{j1}, \ldots, P_{jq}>), \) where \(l = \ldots \)
1. ..., \(x \leq k, \ j_1 = 1, \) and \(j_1 \leq j_2 \leq ... \leq j_m \leq q, \) controlled as follows.

2. Two index variables \(l, j \) are used to scan \(T_1, ..., T_k \) and \(P_1, ..., P_p \), respectively. (Initially, \(l \) is set to 1, and \(j \) is set to 0.) They also indicate that \(<P_1, ..., P_p> \) has been successfully embedded in \(<T_1, ..., T_k> \).

3. Let \(<i_j, v_j> \) be the return value of \(A(T_l, <P_{j+1}, ..., P_p>) \). If \(v_j = p_{j+1} \)'s parent, set \(j \) to be \(j + i \). Otherwise, \(j \) is not changed. Set \(l \) to be \(l + 1 \). Go to (2).

4. If \(j > 0 \) when the loop terminates, \(B(G', G) \) returns \(<i_j, p_{j+1} \)'s parent>, indicating that \(G' \) contains \(P_1, ..., P_p \). Otherwise, \(j = 0 \), indicating that even \(P_1 \) alone cannot be embedded in any \(T_l \ (l \in \{1, ..., k\}) \). However, in this case, we need to continue searching for a highest and widest left corner \(<i, v> \) in \(P_1 \), which can be embedded in \(G' \). This can be done as follows.

i) Let \(<i_1, v_1>, ..., <i_k, v_k> \) be the return values of \(A(T_l, <P_1, ..., P_p>) \), ..., \(A(T_k, <P_1, ..., P_p>) \), respectively. Since \(j = 0 \), each \(v_l \in \delta^- 1(\rho(G)) \) \((l = 1, ..., k)\).

ii) If each \(i_l = 0 \), return \(<0, \rho(G)> \). Otherwise, there must be some \(v_l > i_l > 0 \). We call such a node a non-zero point. Find the first non-zero point \(v_l \) with children \(w_l, ..., w_j \) such that \(v_l \) is not a descendant of any other non-zero point. Then, we will check \(<T_{j+1}, ..., T_k> \) against \(<P[w_{j+1}], ..., P[w_j]> \). Let \(y \) be a number such that \(<P[w_{j+1}], ..., P[w_{j+y}> \) can be embedded in \(<T_{j+1}, ..., T_k> \). The return value of \(B(T', G) \) should be set to \(<i_j + y, v_j> \).

In the above process, (1), (2) and (3) together are referred to as a main checking while (4) alone as a supplement checking.

We notice that in the main checking much useless work is conducted since in the case \(j = 0 \) only one non-zero point \(<i_j, v_j> \) is utilized in the subsequent supplement checking while all the other left corners are not used at all. Thus, the effort for looking for such return values brings the void.

For this reason, we slightly change the definitions of both \(A \)-function and \(B \)-function to let them take a third input parameter which is a node \(u \in V(G) \), used to transfer an important message: once we have detected that only a left corner lower than \(u \) can be produced by the corresponding computation, it should stop immediately (since such a return value will not be used.) We say, a left corner \(<i, v> \) is lower than \(u \) if \(v = u \) or \(v \) is a descendant of \(u \). \(u \) is then called a controlling point. In \(A(T, G, u) \), this checking can be made at the very beginning by checking whether \(p_1 \)'s parent is an ancestor of \(u \). If it is not, the left corner to be returned must be lower than \(u \) and the computation of the corresponding \(A \)-function should not be carried out. In \(B(G', G, u) \), \(u \) is mainly used to avoid any useless supplement checking (to be discussed in 3.2).

Let \(V(G) = \cup_{G \in G} V(G) \).

Our functions are redefined as follows:

\(A: T \times G \times V(G) \rightarrow L_G \)

such that for \(T \in T, G \in G \) and \(u \in V(G) A(T, G, u) = <i, v> \in L_G \) is the highest and widest left corner (in \(G \)) embeddable in \(T \) if it not lower than \(u \). Otherwise, \(A(T, G, u) \) returns an empty left corner.

\(B: G \times G \times V(G) \rightarrow L_G \)

such that for \(G' \in G, G \in G \) and \(u \in V(G) B(G', G, u) = <i, v> \in L_G \) is the highest and widest left corner (in \(G \)) embeddable in \(G' \) if it not lower than \(u \). Otherwise, \(B(T, G, u) \) returns an empty left corner.

Initially, \(u \) is set to be \(\rho(G) \) for both functions.

Elaboration on the controlling points leads to an almost linear time algorithm.

3.2 Algorithm Description

In this subsection, we give the formal description of our algorithm.

- \(A \)-function

![Figure 8. Illustration for an execution of \(B \)](image-url)
function $A(T, G, u)$ (*Initially, $u = \rho(G)*$)
input: $T = <T_1, \ldots, T_n>$, $G = <P_0, \ldots, P_n>$.
output: $<i, v>$ specified above.
begin
1. if p_i’s parent is not an ancestor of u then return $<0, \rho(G)>$.
2. if $(q = 1$ or $|I| < |P_i| + |P_j|)$ then
3. then
 \{ let $P_i = <p_i, P_{i1}, \ldots, P_{in}>$; (*Case 1*)
 \} let $\delta(p_i) = v$; (*Case 1 - (i)*)
5. if label(t) = label(v) then return $<1, v$’s parent$>$.
6. else return $<0, v>$;
7. \}
8. \}
9. \}
10. \}
11. \}
12. \}
13. \}
14. \}
15. \}
16. \}
17. \}
18. \}
19. \}
20. \}
21. \}
22. \}
23. \}
24. \}
25. \}
26. \}
27. \}
28. \}
end

The above algorithm can be viewed as composed of three parts: line 1, lines 2 - 19, and lines 20 - 28. In line 1, we only check whether p_i’s parent is an ancestor of u. If not, return $<0, \rho(G)>$. Otherwise, we go to the second part, in which we first check whether $q = 1$ or $|I| < |P_i| + |P_j|$ (see line 2). If it is the case, we have Case 1 and then lines 3 - 19 are executed. In this process, all the three subcases (i), (ii), and (iii) are checked. If $q > 1$ and $|T_i| > |P_i| + |P_j|$, we go to the third part. That is, lines 20 - 28 will be carried out, in which we handle Case 2. This is done by calling $B(<T_1, \ldots, T_n>, G, u)$. Depending on its return value, subcase (iv) or (v) will be conducted.

Special attention should be paid to line 8, 11, 12, 17, 21, and 22 to see how a controlling point is propagated by a recursive call. For this, we also distinguish among five cases, i.e., Case 1 - (i), Case 1 - (ii), Case 1 - (iii), Case 2 - (iv), and Case 2 - (v).

In Case 1 - (i), no recursive call is conducted and thus the cut u is not transferred.

In Case 1 - (ii), we will call $A(T, <P_{i1}, \ldots, P_{in}>, u)$, by which the controlling point u is directly transferred to the recursive call since its return value will be used as the return value of $A(T, G, u)$. (See line 8.)

In Case 1 - (iii), we will call the B-function to check $<T_1, \ldots, T_n>$ against $<P_{i1}, \ldots, P_{in}>$ or against $<P_i>$, depending on whether label(t) = label(p_i) or label(t) \neq label(p_i). Concerning the controlling point transfer, we need to consider three cases:

- label(t) = label(p_i) and $p_i = u$. In this case, we will call $B(<T_1, \ldots, T_n>, <P_{i1}, \ldots, P_{in}>)$, with the controlling point being set to p_{i1}. It is because in this case the main checking of the B-function execution may reveal that $<T_1, \ldots, T_n>$ is able to embed the whole $<P_{i1}, \ldots, P_{in}>$. In the case, the return value of $A(T, G, u)$ will be set to $<1, p_i$’s parent$, >$, higher than u. So it is a useful computation; and downgrading the controlling point from $u = p_i$ to p_{i1} will let it go through. On the other hand, p_{i1} will effectively prohibit any possible supplement checking in this B-function execution since such a checking can only bring out a left corner lower than p_{i1} and will not be used. (See line 11.)
- label(t) \neq label(p_i). In this case, we will call $B(<T_1, \ldots, T_n>, <P_{i1}, \ldots, P_{in}>, u)$, by which u is directly transferred since we must have $p_{i1} \neq u$ and no useful computation can be eliminated by the controlling point u. (See line 12.)
- label(t) \neq label(p_i). In this case, we will call $B(<T_1, \ldots, T_n>, <P_{i1}, \ldots, P_{in}>, u)$, by which u is directly transferred for the same reason as Case 1 - (ii). (See line 17.)

In Case 2, we will call $B(<T_1, \ldots, T_n>, G, x)$, where x is u or u’s first child, depending on whether label(t) \neq label(p_i) or label(t) $=$ label(p_i).

- If label(t) = label(p_i), the controlling point for this recursive call should be set to u’s first child. It is because $<T_1, \ldots, T_n>$ may not be able to cover P_i, but all the subtrees each rooted as a child of u. In this case, the whole T embeds $G[u]$ and the return value of $A(T, G, u)$ should be set to $<1, u$’s parent$>$, higher than u. So, setting the controlling point u’s first child will keep this computation not skipped over. (See line 21.)

- If label(t) \neq label(p_i), the controlling point u will be directly transferred (i.e., $x = u$) since in this case, only the left corner (returned by
\[B(<T_1, ..., T_2>, G, u) \] higher than \(u \) will be used. (See line 22.)

Accordingly, Case 2 – (iv) is handled in lines 24 - 25, while Case 2 – (v) in line 27.

- \(B \)-function

In \(B(G', G, u) \), the treatment of controlling points is more complicated than in Algorithm A:

1. Let \(G' = <T_1, ..., T_2> \) and \(G = <P_1, ..., P_q> \). At the very beginning, we need to check whether \(u = p_1 \), where \(p_1 \) is the root of \(P_1 \). If it is the case, only the main checking needs to be conducted. (The supplement checking can only deliver a left corner lower than \(p_1 \) and therefore should not be carried out.)

2. In the main checking, a series of calls of \(A \)-functions will be carried out. During this process, the controlling point for each \(A \)-function call needs to be dynamically changed as described below.

\[- \begin{align*}
& \text{Let } \langle s_i, v_i \rangle \text{ be the return value of } A(T_i, \langle p_{j_1}, ..., p_{j_k} \rangle, u) \text{ for } l = 1, ..., x \leq k, \text{ where } j_1 = 1, j_1 \leq j_2 \leq \ldots \leq j_k \leq q, \text{ and } u_1 = u. \text{ In addition, for } 2 \leq l \leq x, u_l \text{ is determined as follows:} \\
& \hspace{1cm} \text{Let } s \text{ be an integer such that any of } T_1, ..., T_2 \text{ is not able to embed } P_i, \text{ but } T_{s+1} \text{ embeds } \langle P_1, ..., P_q \rangle \text{ for some } j > 0. \text{ Then, for } 2 \leq l \leq s, \text{ we have} \\
& \hspace{1cm} u_l = \\
& \hspace{2cm} v_{l+1}, \text{ if } v_{l+1} \text{ is an ancestor of } u_{l+1} \text{ and } i_{l+1} > 0; \\
& \hspace{2cm} u_{l+1}, \text{ if } v_{l+1} \text{ is not an ancestor of } u_{l+1} \text{ or } i_{l+1} = 0; \\
& \hspace{2cm} \text{and for } s + 1 \leq l \leq k, \text{ we have} \\
& \hspace{2cm} u_l = p_{j_l}.
\end{align*} \]

The formula (3.1) shows how the controlling points are changed before we find the first subtree in \(T \) which is able to embed some subtrees in \(G \). After such a subtree is found, the controlling points are determined in terms of the formula (3.2). It is because for each subsequent \(A \)-function call to check a \(T_i \) against \(\langle p_{j_1}, ..., p_{j_k} \rangle \), a returned left corner lower than \(p_{j_k} \) will not be used in the continuing computation.

If \(s < k \), it shows that \(<T_1, ..., T_2> \) includes \(\langle P_1, ..., P_n \rangle \) for some \(m (1 \leq m \leq q) \), and the supplement checking will not be conducted. If \(s = k \), \(<T_1, ..., T_2> \) does not include any subtree in \(G \), but some \(T_j \)'s each may include a non-empty left corner in \(P_i \). Assume that we can find a subtree \(T_j \) such that it embeds a left corner \(\langle i_j, v_j \rangle \) in \(P_i \) with the following properties: i) \(i_j > 0 \), ii) \(v_j \) is not a descendant of any other non-zero point, and iii) \(v_j \) is also an ancestor of \(u \). Then, a supplement checking will be performed as described in 3.1. Otherwise, no supplement checking is needed.

In terms of the above discussion, we design two subfunctions of the \(B \)-function: \(B\)-without-s(\(G', G \)), in which no supplement checking will be carried out; and \(B\)-with-s(\(G', G, u \)), in which a supplement checking may be invoked. Then, during the execution of \(B(G', G, u) \), if \(u = p_1 \), call \(B\)-without-s(\(G', G \)); otherwise, call \(B\)-without-s(\(G', G, u \)).

\[\text{function } B(G', G, u) \text{ (*Initially, } u = \rho(G)\text{*)} \]

input: \(G' = <T_1, ..., T_2>, G = <P_1, ..., P_q> \)

output: \(\langle i, v \rangle \) specified above.

begin
1. if \(u = p_1 \) then return \(B\)-without-s(\(G', G \));
2. else return \(B\)-with-s(\(G', G, u \));

end

\[\text{function } B\)-without-s(\(G', G \)) \]

begin
1. \(l := 1; j := 0; \)
2. while \((j < q \text{ and } l \leq k) \) do
3. \{ \(\langle s_i, v_i \rangle := A(T_i, \langle p_{j_1}, ..., p_{j_k} \rangle, v) \)
4. \(\text{if } v_i = p_i \text{’s parent and } i_i > 0 \text{ then } j := j + i_i \)
5. \}
6. return \(\langle j, p_i \text{’s parent} \rangle \);

end

\[\text{function } B\)-with-s(\(G', G, u \)) \]

begin
1. \(l := 1; j := 0; v := u; f := 0; \)
2. while \((j < q \text{ and } l \leq k) \) do (*main checking*)
3. \{ \(\langle s_i, v_i \rangle := A(T_i, \langle p_{j_1}, ..., p_{j_k} \rangle, v) \)
4. \(\text{if } (v_i = p_i \text{’s parent and } i_i > 0 \text{ then } j := j + i_i \text{;} v := p_i) \)
5. \(\text{else if } (v_i \text{ is an ancestor of } v \text{ and } i_i > 0 \text{ then } v := v_i; f := i_i) \)
6. \(l := l + 1; \)
7. \}
8. if \(j > 0 \) then return \(\langle j, p_i \text{’s parent} \rangle \);
9. if \(f = 0 \) then return \(<0, 0, 0> \);
10. let \(w_1, ..., w_k \) be the children of \(v \) (*supplement checking*)

begin
11. \(l := f + 1; j := i_i \)
12. while \((j < s \text{ and } l \leq k) \) do
13. \{ \(\langle s_i, v_i \rangle := A(T_i, \langle G(w_1), ..., G(w_k) \rangle, w_{v_i}) \)
14. \(\text{if } (v_i = v \text{ and } i_i > 0 \text{ then } j := j + i_i \)
15. \(l := l + 1; \)
16. \}
17. return \(\langle j, v \rangle \);

end

In \(B(G', G, u) \), we first check whether \(u = p_1 \). If it is the case, we will call \(B\)-without-s(\(G', G \)) (see line 1), in which, by a series of \(A \)-function calls, we try to find a largest \(j \) such that \(<T_1, ..., T_2> \) is able to embed \(<P_1, ..., P_q> \), but not able to embed \(<P_1, ..., P_p, P_{p+1}> \). In this process, for each \(A \)-function call of the form \(A(T_i, \langle p_{j_1}, ..., p_{j_k} \rangle, u) \), \(u \) is set to be \(p_{j_k} \), the root of \(P_{j_k} \) (see line 3 in \(B\)-without-s()). No
supplement checking will be conducted since the left corner produced by a supplement checking must be lower than \(p_j \).

If \(u \neq p_1 \), we will call \(B \)-with-\(s(G', G, u) \) (see line 2 in \(B(\,.) \)), in which we have two \(\text{while} \)-loops: one from line 2 to 7 and the other from line 12 to 16. In the first \(\text{while} \)-loop, we do the main checking to find the largest \(j \) such that \(\langle T_1, ..., T_j \rangle \) embeds \(\langle P_1, ..., P_r \rangle \). In this process, by each \(A \)-function call, the corresponding controlling point will be set according to the formulas (3.1) and (3.2). In the second \(\text{while} \)-loop, the \textit{supplement checking} will be carried out. However, this is done only when the following two conditions are satisfied:

1. \(j = 0 \), and
2. There exists at least a non-zero point \(\langle i, v_j \rangle \) such that \(v_j \) is not lower than \(u \).

In \(B \)-with-\(s(G', G, u) \), we use a variable \(f \) to record the first of such non-zero points, which is not a descendant of any other non-zero point. Initially, \(f \) is set 0. Therefore, if (2) is not satisfied, we must have \(f = 0 \) after the main checking is completed. So only when \(j = 0 \) and \(f > 0 \), the supplement checking will be conducted (See lines 8 and 9.)

We also notice that in the supplement checking, for each \(A \)-function call of the form \(A(T_r, \langle G[w_{j+1}], ..., G[w_i], v_j \rangle) \), the controlling point is set to be \(w_{j+1} \) to prohibit a further supplement checking since this can only return a useless left corner lower than \(w_{j+1} \).

\textbf{4 CONCLUSIONS}

In this paper, a new algorithm is proposed to solve the ordered tree inclusion problem. Up to now, the best algorithm for this problem needs quadratic time. However, ours requires only \(O(|T| \log D_T) \) time and \(O(|T| + |P|) \) space, where \(T \) and \(P \) are a target and a pattern tree (forest), respectively; and \(D_T \) is the depth of \(P \). The critical concept of our algorithm is the left corner, which enables us to develop a deep insight into the tree inclusion problem and extend it to a more general one to return a left corner as a result. In practice, the general problem seems to be more useful than the original one since if \(P \) cannot be embedded in \(T \), we may want to know whether any part of \(P \) can be embedded in \(T \).

\textbf{REFERENCES}

Y. Chen and Y.B. Chen, On the Tree Inclusion Problem, 2013 Int. Conf. on Computer, Networks and Communication Engineering (ICCNCE 2013), Beijing, China, May 23-24, 2013.

