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Abstract

Regular two-graphs are antipodal distance-regular double coverings of the
complete graph, and they have many interesting combinatorial properties.
We derive a construction for regular two-graphs containing cliques of spec-
ified order from their connection to large sets of equiangular lines in Eu-
clidean space. It is shown that the existence of a regular two-graph with
least eigenvalue τ containing a clique of order d depends on the existence of
an incidence structure on d points with special properties. Quasi-symmetric
designs provide examples of these incidence structures.
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Chapter 1

Introduction

We discuss the relationship between regular two-graphs and large sets of
equiangular lines in Euclidean space, and use linear algebra to derive a
construction for regular two-graphs with cliques of specified order. Regular
two-graphs are antipodal distance-regular graphs of diameter three. These
are the first nontrivial class of antipodal distance-regular graphs, and they
have many interesting combinatorial properties. They can be viewed as two-
fold covers of the complete graph, and doing so will help uncover many of
their important characteristics.

1.1 Covering Graphs and Two-Graphs

Let G be a graph, and suppose that there is a partition Π of its vertices into
cells such that each cell is an independent set, and between any two cell C1

and C2, either there are no edges, or there is an induced matching of size
max{C1, C2}. Let G/Π be the graph with the cells of Π as vertices, in which
two cells are adjacent if and only if there is an induced matching between
them in G. Then we say that G is a covering graph of G/Π. The graph
G/Π is called the quotient graph of G over Π. The quotient graph G/Π
often preserves some of the structure of G. In particular, the characteristic
polynomial of G/Π always divides that of G. The map sending each vertex
in G to its corresponding cell is called the covering map, and the cells are
called fibres. If G is connected, then each fibre has the same size, called the
index of the covering. If the index is r, then G is called an r-fold covering
of G/Π.

Let X be a graph with n vertices. The switching graph Sw(X) of X is
the graph with vertex set V (X)×{0, 1}, in which (v, i) is adjacent to (w, i)
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2 CHAPTER 1. INTRODUCTION

if and only if vw ∈ E(X), and (v, i) is adjacent to (w, 1 − i) if and only
if v 6= w and vw 6∈ E(X). A switching graph is also called a two-graph.
Let Π be the partition of the vertices of Sw(X) into the n cells of the form
{(v, 0), (v, 1)}, for v in X. Since there is an induced matching in Sw(X)
between any two distinct cells in Π, we see that the two-graph Sw(X) is a
two-fold covering of the complete graph on n vertices, Kn, for any graph X,
and if Sw(X) is connected, it has diameter three. Thus every eigenvalue of
Kn is also an eigenvalue of Sw(X) with the same multiplicity. Hence the
two-graph Sw(X) has the n eigenvalues of Kn, and it has n more eigenvalues
λ1, λ2, . . . , λn, called the nontrivial eigenvalues of the two-graph. A regular
two-graph is a two-graph with only two distinct nontrivial eigenvalues.

1.2 Regular Two-Graphs

A connected graph is distance regular if for any two vertices u and v, the
number of vertices at distance i from u and j from v depends only on i, j, and
the distance between u and v. These graphs are necessarily regular, since u
may equal v. A connected graph of diameter d is antipodal if the vertices at
distance d from a given vertex are all at distance d from each other. The
antipodal distance-regular graphs are covering graphs (see page 32-33). In
Theorem 3.14 we will provide a proof due to Godsil and Hensel [9] that a
two-graph is regular if and only if it is an antipodal distance-regular two-fold
cover of Kn (page 36). The antipodal distance-regular graphs of diameter
one are the complete graphs, and those of diameter two are the complete
bipartite graphs Kn,n, so those of diameter three are the first nontrivial case.
These graphs are r-fold coverings of the complete graph, for some integer
r. Thus, one reason for studying regular two-graphs is to gain insight into
the general structure of antipodal distance-regular graphs. Distance-regular
graphs have important relations to other areas of combinatorics, such as
finite geometry and coding theory.

1.3 Equiangular Lines

A set of lines through the origin of Rd is equiangular if the angle between
any two distinct lines in the set is the same. Regular two-graphs have an
important connection to the problem of finding the maximum number υ(d)
of equiangular lines in Rd, which is the maximum size of a simplex in real
projective space. In the late 1960s, Van Lint and Seidel [22] expressed this
geometric problem in graph-theoretic terms. The Seidel matrix S(X) of a
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graph X is defined by

S(X) = I + 2A(X)− J,

in which A(X) is the adjacency matrix of X, I is the identity matrix, and J
is the all ones matrix. Van Lint and Seidel used linear algebra to show that
the problem of finding a set of n equiangular lines in Rd is equivalent to the
problem of finding graphs on n vertices whose least Seidel matrix eigenvalue
has multiplicity n − d (see page 7 - 9). They derived a bound on the size
of a set of equiangular lines in Rd with mutual angle θ in terms of d and
cos(θ), called the relative bound (see Theorem 2.3, page 11). They showed
that sets of equiangular lines which meet this relative bound correspond
to graphs X such that Sw(X) is a regular two-graph (see Theorem 2.8,
page 19). Consequently, in the late 1960s and early 1970s, many algebraic
graph theorists found constructions for regular two-graphs with the aim of
finding large sets of equiangular lines. They also found connections between
these structures and finite simple groups.

In Chapter 4, we will take the opposite approach. We will use linear
algebraic methods to construct large sets of equiangular lines, and use them
to construct regular two-graphs which contain cliques of a specified order.
A positive basis of a set Ω of unit vectors spanning a set of equiangular
lines in Rd is a subset of Ω of order d in which the inner product of any
two vectors is positive. A positive basis of Ω corresponds to a clique in the
corresponding two-graph. We will show that a positive basis B is a basis of
Rd, and then use linear algebraic methods to characterize the vectors in Ω\B
(see page 44 - 50). By relating these vectors to subsets of {1, 2, . . . , d}, we
will show that the existence of a regular two-graph with a clique of order d
having least eigenvalue τ depends on the existence of an incidence structure
with special properties (Theorem 4.4, page 50), of which quasi-symmetric
designs are one example.

1.4 Outline of the Thesis

In Chapter 2, we discuss the relationship between large sets of equiangular
lines and regular two-graphs. We will first describe the graph-theoretic
approach of Van Lint and Seidel to finding a set of n equiangular lines in
Rd. We present a linear algebraic proof of Van Lint and Seidel’s relative
bound on the number of equiangular lines in Rd which have mutual angle θ,
and we show that the switching graphs of graphs corresponding to sets of
lines which meet the relative bound are regular two-graphs. We also discuss
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an absolute bound on the number υ(d) of equiangular lines in Rd due to
Gerzon, which depends only on the dimension d of the space. Examples will
be given for which these bounds are tight.

In Chapter 3 we will define strongly regular graphs and discuss some of
their properties, and then provide a proof due to Godsil and Royle [10] that
the neighbourhoods of regular two-graphs are all strongly regular with the
same parameters. Then we will discuss antipodal distance-regular graphs,
and view regular two-graphs as antipodal distance-regular two-fold covers
of the complete graph. We will look at results regarding antipodal distance-
regular graphs due to Brouwer, Cohen, Neumaier [1] and Gardiner [8], which
show that they are covering graphs. We provide a proof due to Godsil and
Hensel [9] which implies that regular two-graphs are the distance-regular
two-fold covers of Kn. This view of regular two-graphs will help us restrict
the parameters of these structures. We will generate and list the feasible
parameter sets for regular two-graphs on n vertices, for n ≤ 100, in Table 3.1
and 3.2.

In Chapter 4, we derive a linear algebraic construction for regular two-
graphs with cliques of specified order, and connect these graphs to inci-
dence structures with special properties. We discuss quasi-symmetric de-
signs, which provide examples of these incidence structures. Finally, we
construct regular two-graphs on some of the parameter sets generated in
Chapter 3.



Chapter 2

Equiangular Lines and
Two-Graphs

2.1 Introduction

A simplex in a metric space V is a subset of V in which the distance be-
tween any two distinct points is the same. One of the founding problems
of algebraic graph theory is that of finding the maximum number of points
in a simplex in real projective space. The points in real projective space
of dimension d − 1 are the lines through the origin of Rd, and the distance
between two such lines is determined by the angle between them. A set of
lines is equiangular if the angle between any two distinct lines in the set is
the same. Hence, the problem of finding the maximum size of a simplex in
(d− 1)-dimensional real projective space is equivalent to that of finding the
maximum size of a set of equiangular lines in Rd.

Investigations into the maximum number of equiangular lines in Eu-
clidean space were initiated by Haantjes [13] in 1948 in the terminology of
elliptic geometry, and he solved this problem for dimensions at most four
using geometric methods. At first glance, this geometric problem seems to
have little connection to graphs. However in 1966, Van Lint and Seidel [22]
used linear algebraic techniques to show that this problem can be expressed
in graph-theoretic terms. They introduced a (0,±1)-adjacency matrix for a
graph, called the Seidel matrix, and associated it to the Gram matrix for a
set of unit vectors spanning a set of equiangular lines. They showed that
a set of n equiangular lines in Rd can be viewed as a double cover of the
complete graph on n vertices, called a two-graph.

Van Lint’s and Seidel’s graph-theoretic approach to this problem in el-

5
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liptic geometry led many algebraic graph theorists to find constructions for
graphs which give rise to large sets of equiangular lines. Many of these con-
structions were found in the late 1960’s and early 1970’s, and are connected
to combinatorial designs. Complete descriptions of these constructions can
be found in works by Seidel [19], [17], [18], [16], Goethels and Seidel [11],
[12], Van Lint and Seidel [22], Bussemaker and Seidel [2], Taylor and Seidel
[20], Taylor [21], Delsarte and Goethals [7], Hestenes and Higman [14], and
Conway [5]. Many of these constructions also have significance in the theory
of finite simple groups, but these connections will not be discussed in this
thesis. More recently, in 2000 De Caen [6] found an infinite family of graphs
which yield large equiangular line sets.

In this chapter, we discuss the graph-theoretic approach of Van Lint and
Seidel to the problem of finding large sets of equiangular lines in Rd. In
Section 2.2, it is shown that this problem is equivalent to the problem of
finding graphs for which the least Seidel matrix eigenvalue has large mul-
tiplicity. In Sections 2.3 and 2.4, we look at two bounds on the maximum
number of equiangular lines in Rd. One is an absolute bound which depends
only on the dimension d, and the other is a relative bound, which depends
on both d and the mutual angle between the lines. Examples of graphs for
which these bounds are tight are provided. In Section 2.5, the sharpness of
the absolute bound is examined in detail. In Section 2.6, the operation of
switching is discussed, and it is demonstrated that a set of equiangular lines
is equivalent to a two-graph.

There are several good surveys of equiangular lines and two-graphs in
[15], [19] and [20], but the approach taken in this chapter is that of Godsil
and Royle in [10].

2.2 Equiangular Lines and Graphs

Given any set of vectors Ω = {u1, u2, . . . , un} in Rd, the Gram matrix of
the vectors in Ω is the n × n matrix G such that Gi,j = uT

i uj . Observe
that if U is a matrix, UT U is the Gram matrix of the columns of U . This
matrix is positive semidefinite and has the same rank as U . Conversely, any
symmetric, positive semidefinite matrix of rank d is the Gram matrix for
the columns of a d × n matrix, as Lemma 2.1 shows. This is a standard
result in Linear Algebra, and it demonstrates that we can represent any set
of vectors by its Gram matrix.

2.1 Lemma. Let G be an n × n symmetric matrix. Then G is a positive
semidefinite matrix of rank d if and only if there is a d×n matrix U of rank
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d such that G = UT U .

Proof: Suppose G is an n×n positive semidefinite matrix of rank d. Since
G is symmetric, it is orthogonally diagonalizable, and hence

G = LT ΛL,

in which Λ is the n×n diagonal matrix whose i-th diagonal entry is the i-th
eigenvalue of G, and L is the n× n orthogonal matrix whose i-th column is
an eigenvector corresponding to the i-th eigenvalue of G. Since G has rank
d, the dimension of the kernel of G is n− d. Hence zero is an eigenvalue of
G with multiplicity n − d. We can assume, without loss of generality, that
the last n− d diagonal entries of Λ are zero. This implies that

G = MT Λ′M,

in which Λ′ is the d × d diagonal matrix of non-zero eigenvalues of G, and
M is the d× n matrix whose rows consist of the first d rows of L.

Now since G is positive semidefinite, all of its eigenvalues are non-
negative, and hence all of its non-zero eigenvalues are positive. Thus there
is a d × d diagonal matrix D such that D2 = Λ′. Now U = DM is a d × n
matrix such that UT U = MT D2M = MT Λ′M = G. Since LT is orthogo-
nal, its columns are linearly independent, and hence the columns of MT are
linearly independent. Thus rk(M) = rk(MT ) = d. Since the entries of D
are all positive,

rk(U) = rk(DM) = rk(M) = d.

Conversely, if U is a d × n matrix such that G = UT U , then for any
vector u in Rd, we have

uT Gu = uT UT Uu = (Uu)T (Uu) ≥ 0.

Hence G is positive semidefinite. It remains to show that G has the same
rank as U .

Suppose that UT Ux = 0. Then xT UT Ux = (Ux)T (Ux) = 0. This
implies that Ux = 0. Also, if Ux = 0, then clearly UT Ux = 0. Thus U and
UT U have the same kernel, and since they both have n columns, we must
have that rk(U) = rk(UT U) = rk(G).

Now let Ω = {x1, x2, . . . , xn} be a set of unit vectors spanning a set of n
equiangular lines in Rd with mutual angle θ. Then for i 6= j,

〈xi, xj〉 = xT
i xj = ± cos(θ).
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Let U be the d × n matrix with the vectors of Ω as its columns. Then
G = UT U is the Gram matrix of the vectors in Ω, and thus G is a symmetric,
positive semidefinite matrix of rank d. Let α = cos(θ). Then G has the form

G = I + αS,

in which I is the identity matrix, and S is an n×n symmetric (0,±1)-matrix
with all diagonal entries equal to zero, and all off-diagonal entries equal to
±1. We can view S as a nonstandard adjacency matrix of a graph X on n
vertices, in which two distinct vertices i and j of X are adjacent if Si,j = 1,
and nonadjacent if Si,j = −1. This matrix is called the Seidel matrix of
X, and is denoted by S(X). Clearly, if X is the complement of the graph
X, then S(X) = −S(X). The Seidel matrix of X is related to the usual
adjacency matrix A(X) of X by

S(X) = I + 2A(X)− J,

in which J denotes the n× n matrix with every entry equal to 1. Hence, a
set of unit vectors spanning a set of n equiangular lines gives rise to a graph
on n vertices.

The trace of a square matrix A is the sum of the diagonal entries of A,
denoted by tr(A). Note that tr(AB) = tr(BA) for any two n × n matrices
A and B, and if A and B are similar matrices, then tr(A) = tr(B).

Now suppose that we are given a graph X on n vertices with Seidel
matrix S. Since S is symmetric, it is similar to its diagonal matrix of
eigenvalues, D, so tr(S) = tr(D). Since tr(S) = 0, the eigenvalues of S sum
to zero. Since S 6= 0, we must have that the least eigenvalue of S is negative.
If this eigenvalue is −α, then

G = I +
1
α

S (2.1)

is a positive semidefinite matrix. If the rank of G is d, then by Lemma 2.1
it is the Gram matrix for a set Ω of n vectors in Rd, and Equation 2.1 shows
that Ω is a set of unit vectors spanning a set of equiangular lines with mutual
angle arccos(1/α). Therefore, any graph X on n vertices gives rise to a set
of n unit vectors spanning a set of equiangular lines in Rd, for some positive
integer d.

Now suppose that X is a graph on n vertices and that its Seidel matrix
S has least eigenvalue −α with multiplicity k. Since S is symmetric, the
geometric multiplicity of an eigenvalue of S is equal to its algebraic multi-
plicity. Thus the dimension of the eigenspace associated to the eigenvalue



2.2. EQUIANGULAR LINES AND GRAPHS 9

−α is k. Hence
dim(ker(S + αI)) = k.

Thus
n− k = rk(S + αI) = rk(I +

1
α

S) = rk(G),

where G is the Gram matrix for a set of unit vectors spanning a set of
equiangular lines in Rn−k, with mutual angle arccos(1/α).

Hence, maximizing the multiplicity of the least eigenvalue of the Seidel
matrix of X minimizes the dimension of the Euclidean space in which the
associated set of equiangular lines exist. Thus the geometric problem of
finding the least integer d such that there are n equiangular lines in Rd is
equivalent to the graph-theoretic problem of finding graphs X on n vertices
such that the multiplicity of the least eigenvalue of S(X) is as large as
possible.

The set Ω = {x1, x2, . . . , xn} of spanning unit vectors we choose to rep-
resent a set of equiangular lines is not unique, since −xi spans the same
line as xi, and choosing different spanning sets may lead to different graphs.
However, in Section 2.6 it will be shown that these graphs are related.

Example. Let X be the line graph of K8, denoted by L(K8). This graph
has order 28. The eigenvalues of S(X) are 9 and −3 with multiplicities 7
and 21, respectively. Hence

G = I +
1
3
S(X)

is the Gram matrix of a set of 28 unit vectors spanning a set of 28 equiangular
lines in R7, with mutual angle arccos(1/3).

The 28 equiangular lines in R7 given by L(K8) in the above example can
also be obtained by taking the

(
8
2

)
unit vectors in R8 of the form

xT = 1/
√

24(3, 3,−1,−1,−1,−1,−1,−1),

with two entries equal to 3 and the remaining six entries equal to −1. One
can verify that for two distinct vectors x and y of this form,

xT y = ±1
3
,

where the positive sign is taken if and only if x and y have an entry of 3 in
the same position. Since all of these vectors lie in the space of vectors in
R8 which are orthogonal to the all ones vector 1, and since this space has
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dimension 7, these unit vectors can be mapped to a set of 28 unit vectors
spanning a set of equiangular lines in R7, with mutual angle arccos(1/3).
In the next section, it will be shown that 28 is the maximum number of
equiangular lines possible in R7.

2.3 The Absolute Bound

We present two bounds on the number of equiangular lines in Rd. The first
is due to Gerzon in a private communication with Lemmens and Seidel. It is
called the absolute bound because it does not depend on the common angle
between the lines.

2.2 Theorem. (The Absolute Bound) If there are n equiangular lines
in Rd, then

n ≤ (
d+1
2

)
.

Proof: Let {x1, x2, . . . , xn} be a set of unit vectors spanning a set of n
equiangular lines in Rd, with mutual angle arccos(α), and let

Xi = xix
T
i .

We show that the matrices Xi (1 ≤ i ≤ n) form a linearly independent set
in the space of symmetric d× d matrices, which has dimension

(
d+1
2

)
.

First, observe that for each i, Xi is a symmetric d× d matrix and X2
i =

Xi. Thus Xi represents orthogonal projection onto its column space, namely
the line spanned by xi. For i 6= j, we have

XiXj = xix
T
i xjx

T
j = (xT

i xj)xix
T
j ,

and thus
tr(XiXj) = (xT

i xj)2 = α2. (2.2)

Also
tr(X2

i ) = tr(Xi) = tr(xix
T
i ) = xT

i xi = 1. (2.3)

Now suppose that

Y =
n∑

i=1

ciXi.
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Then

tr(Y 2) =
∑

i,j

cicj tr(XiXj)

=
n∑

i=1

c2
i +

∑

i,j:i6=j

cicj α2

= α2

(
n∑

i=1

ci

)2

+ (1− α2)
n∑

i=1

c2
i . (2.4)

Since 0 < α < 1, Equation 2.4 implies that tr(Y 2) = 0 if and only if ci = 0
for all i. Since Y is symmetric, tr(Y 2) ≥ 0 with equality if and only if
Y = 0. Therefore Y = 0 if and only if ci = 0 for all i, and hence the Xi form
a linearly independent set in the space of symmetric d× d matrices. Hence
n ≤ (

d+1
2

)
.

The set of 28 equiangular lines in R7 associated to the graph L(K8) of
Example 2.2 meets the absolute bound.

2.4 The Relative Bound

We next consider a relative bound on the number of equiangular lines in
Rd, which depends on both d and the cosine of the angle between the lines.
This result is due to Van Lint and Seidel in [22].

2.3 Theorem. (The Relative Bound) Suppose that there are n equian-
gular lines in Rd with mutual angle arccos(α). If 1

α2 > d, then

n ≤ d− dα2

1− dα2
.

If X1, X2, . . . , Xn are the projections onto these lines, then equality holds if
and only if

n∑

i=1

Xi =
n

d
I.

Proof: Set

Y = I − d

n

n∑

i=1

Xi.
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Since Y is symmetric, tr(Y 2) ≥ 0, with equality if and only if Y = 0.
Observe that

Y 2 = I − 2d

n

n∑

i=1

Xi +
d2

n2

(
n∑

i=1

Xi

)2

,

and thus

0 ≤ tr(Y 2) = tr(I)− 2d

n

n∑

i=1

tr(Xi) +
d2

n2
tr

(
n∑

i=1

Xi

)2

.

Hence

0 ≤ d− 2d

n
(n) +

d2

n2




n∑

i=1

tr(X2
i ) +

∑

i6=j

tr(XiXj)


 .

Now by Equation 2.2, tr(XiXj) = α2 and by Equation 2.3, tr(X2
i ) = 1.

Thus

0 ≤ − d +
d2

n2
(n + n(n− 1)α2).

Solving for n in the above inequality, we obtain

n ≤ d− dα2

1− dα2
,

whenever 1/α2 > d. Moreover, equality holds if and only if Y = 0, in which
case

n∑

i=1

Xi =
n

d
I,

as required.

Example. Let X be the Petersen graph, L(K5). The eigenvalues of S(X)
are 3 and −3 with equal mutiplicity 5, thus

G = I +
1
3
S(X)

is the Gram matrix for a set of unit vectors spanning a set of 10 equiangular
lines in R5, with mutual angle arccos(1/3). This meets the relative bound,
but not the absolute bound.
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2.5 Sharpness of the Absolute Bound

If a set of n equiangular lines in Rd meets the absolute bound, then the
proof of Theorem 2.2 shows that the projections X1, X2, . . . , Xn onto the
lines form a basis for the space of d× d symmetric matrices. In particular,

I ∈ span{X1, X2, . . . , Xn}. (2.5)

Note that 2.5 also follows if equality holds in the relative bound of Theo-
rem 2.3. The result in Lemma 2.5 is due to Van Lint and Seidel. It shows
that having I in the span of the projections onto the lines has significant
consequences, whether or not the absolute bound is met. The linear alge-
braic proof provided here is that of Godsil and Royle in [10], and it uses the
following result from [10, page 166], which is stated here without proof.

2.4 Lemma. Let A and B be matrices such that AB and BA are both
defined. Then AB and BA have the same nonzero eigenvalues with the
same multiplicities.

2.5 Lemma. Suppose that X1, X2, . . . , Xn are the projections onto a set of
equiangular lines in Rd with mutual angle arccos(α). If

I =
n∑

i=1

ciXi,

then ci = d/n for all i, and

n =
d− dα2

1− dα2
.

The Seidel matrix determined by any set of n unit vectors spanning these
lines has eigenvalues

− 1
α

,
n− d

dα

with multiplicities n − d and d, respectively. If n 6= 2d, then 1/α is an
integer.

Proof: For any j in {1, 2, . . . , n}, we have

Xj = XjI = Xj

n∑

i=1

ciXi =
n∑

i=1

ciXiXj .
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Hence

1 = tr(Xj) =
n∑

i=1

ci tr(XiXj) = (1− α2)cj + α2
n∑

i=1

ci.

Thus

1 = (1− α2)cj + α2
n∑

i=1

ci, (2.6)

so

cj =
1− α2 (

∑n
i=1 ci)

1− α2
,

for all j. Hence, the ci are all equal (1 ≤ i ≤ n). Since

d = tr(I) =
n∑

i=1

ci tr(Xi) =
n∑

i=1

ci = nci,

we must have that ci = d/n for all i. Now Equation 2.6 implies that

n =
d− dα2

1− dα2
.

Now let Ω = {xi, x2, . . . , xn} be a set of unit vectors spanning the n
equiangular lines. Then Xi = xix

T
i . Let U be the d × n matrix with the

vectors in Ω as its columns. Then

UUT =
n∑

i=1

xix
T
i =

n∑

i=1

Xi =
n

d
I,

and
UT U = I + αS,

where S is the Seidel matrix determined by Ω. By Lemma 2.4, the matrices
UUT and UT U have the same nonzero eigenvalues with the same multiplic-
ities. Now UUT is d× d, so it follows that UT U = I + αS has eigenvalues 0
and n/d with multiplicities n−d and d, respectively. We obtain the required
eigenvalues of S.

Since S has integer entries, the eigenvalues of S are algebraic integers,
so they are either integers or algebraically conjugate, and so have the same
multiplicity. If n 6= 2d, the multiplicities are different, so in this case 1/α is
an integer.
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d n 1/α Graph
2 3 2 K3

3 6
√

5 C5 ∪K1

7 28 3 L(K8)
14 105 4 - - -
23 276 5 Section 4.4

Table 2.1: Sharpness of the Absolute Bound

If the absolute bound of Theorem 2.2 is met, then there are n =
(

d+1
2

)
equiangular lines in Rd. In this case, Lemma 2.5 implies that d + 2 = 1/α2.
If d 6= 3, then n 6= 2d, so 1/α is an integer and hence d+2 must be a perfect
square. Table 2.1 lists some integers d ≥ 2 for which there could be a set of
equiangular lines in Rd meeting the absolute bound.

In [15], a result due to Peter Neumann shows that if n > 2d, then 1/α
is an odd integer, so there do not exist 105 equiangular lines in R14. The
last column of Table 2.1 lists graphs which give rise to equiangular line sets
meeting the absolute bound in each of the other four cases. In [12], Goethals
and Seidel constructed a strongly regular graph which gives rise to a set of
276 equiangular lines in R23, and they showed that the two-graph associated
to this graph is the unique regular two-graph on 276 vertices. This graph
is also constructed in [10] by Godsil and Royle using the Witt design on 23
points. In Chapter 4, we will take a different approach to constructing this
graph, and show that it contains a clique of order 23.

It is not know whether there are any other examples of equiangular line
sets for which the absolute bound is tight. In fact, not much is known about
the maximum number υ(d) of equiangular lines in Rd in general. The best
asymptotic result to date is de Caen’s construction in [6] for an infinite
family of graphs which give rise to 2/9(d + 1)2 equiangular lines in Rd, for
integers d of the form d = 3(22t−1)− 1. This is the first known constructive
lower bound on υ(d) of order d2.

2.6 Switching and Two-Graphs

Let U be a set of n equiangular lines in Rd, and let Ω = {x1, x1, . . . , xd} be
a set of unit vectors spanning U . Of course Ω is not unique, since the unit
vector x spans the same line as −x, so there are 2n possible choices for Ω.
Different choices for Ω may have different Gram matrices, and hence may
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yield different graphs. However, we shall see that these graphs are related.
Suppose that σ ⊆ {1, 2, . . . , n} and that we form Ω′ from Ω be replacing

each vector xi in Ω by −xi whenever i ∈ σ. Let G be the Gram matrix for
the vectors in Ω and let G′ be the Gram matrix for the vectors in Ω′. Then
G′ is obtained from G by multiplying the rows and columns of G indexed
by σ by −1. The graph X ′ corresponding to Ω′ arises from the graph X
corresponding to Ω by changing all of the edges between σ and V (X) \ σ to
non-edges, and all of the non-edges between σ and V (X) \ σ to edges. We
call this operation switching on the subset σ.

For a graph X and a subset σ of V (X), let Xσ denote the graph obtained
from X by switching on σ. The set of graphs which can be obtained from
X by switching on any subset of V (X) is called the switching class of X. If
Y is isomorphic to Xσ for some subset σ of V (X), we say that X and Y are
switching equivalent. The set of all graphs on n vertices can be partitioned
into a finite number of switching classes, and a set of n equiangular lines
determines one of these switching classes.

In Section 2.2 we saw that the set of equiangular lines determined by
any graph on n vertices depends only on the eigenvalues of the Seidel matrix
of the graph. Lemma 2.6 shows that the Seidel matrices of all graphs in the
same switching class have the same eigenvalues with the same multiplici-
ties. Hence these eigenvalues can be considered constant parameters of the
switching class.

2.6 Lemma. Let X be a graph and let σ be a subset of V (X). Then S(X)
and S(Xσ) have the same eigenvalues.

Proof: We show that S(X) and S(Xσ) are similar matrices. Let D be the
diagonal matrix whose rows and columns are indexed by the vertices of X,
in which Duu = −1 if u ∈ σ, and Duu = 1 otherwise. Then D2 = I, and

S(Xσ) = DS(X)D.

Thus S(Xσ) and S(X) are similar matrices, and therefore have the same
eigenvalues with the same multiplicities.

Let X be a graph with n vertices and let N(v) denote the neighbourhood
of the vertex v in X. Then XN(v) is a graph with the vertex v isolated. Let
Xv denote the graph on n− 1 vertices obtained from XN(v) by deleting the
isolated vertex v. For any vertex v, there is a unique graph in the switching
class of X with v isolated, so the collection of graphs

{Xv : v ∈ V (X)}
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is independent of the choice of X, and depends only on the switching class
of X. We call this collection of graphs the neighbourhoods of the switching
class.

We now define a graph on 2n vertices associated to any switching class
of graphs on n vertices. Given a graph X, the switching graph Sw(X) of X
is the graph with vertex set

V (X)× {0, 1}

in which (x, i) is adjacent to (y, i) if and only if xy ∈ E(X), and (x, i) is
adjacent to (y, 1− i) if and only if x 6= y and xy 6∈ E(X). Note that Sw(X)
is a regular graph on 2n vertices with valency n − 1, and Sw(X) contains
two copies of the graph X, namely the subgraphs induced by the vertices of
X × {i}, for i = 0, 1.

If v ∈ V (X), then the vertices (v, 0) and (v, 1) have disjoint neighbour-
hoods of size n − 1 in Sw(X), both of which are isomorphic to Xv. Hence
Sw(X) is completely determined by any one of its neighbourhoods, and if
it is connected, it has diameter three. Thus Sw(X) is determined only by
the switching class of X, rather than by the particular choice of X, so two
graphs X and Y are switching equivalent if and only if Sw(X) is isomorphic
to Sw(Y ). Also, its clear that Sw(X) = Sw(X).

A switching graph is also called a two-graph. Lemma 2.6 and the pre-
vious discussion imply that there is a one-to-one correspondence between
switching classes of graphs on n vertices and sets of n equiangular lines
in Euclidean space. Since graphs in the same switching class give rise to
isomorphic switching graphs, there is a one-to-one correspondence between
sets of equiangular lines in Euclidean space and two-graphs. Sometimes
two-graphs are defined as switching class of graphs, but when we refer to
a two-graph on n vertices, we mean the switching graph associated to a
switching class of graphs on n vertices.

Let X be a graph, let A denote the adjacency matrix of X, and let A
denote the adjacency matrix of the complement of X. Then the adjacency
matrix of Sw(X) is (

A A

A A

)

and S(X) = A−A. Since

(
I −I
0 1

)−1

=
(

I I
0 I

)
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and (
I I
0 I

)(
A A

A A

)(
I I
0 −I

)
=

(
J − I 0

A S(X)

)
,

it follows that the matrices(
A A

A A

)
,

(
J − I 0

A S(X)

)

are similar. Since J − I is the adjacency matrix of the complete graph, this
implies that the characteristic polynomial of Sw(X) is the product of the
characteristic polynomial of Kn with the characteristic polynomial of S(X).
Thus Sw(X) has eigenvalues −1 and n− 1 with multiplicities n − 1 and 1,
respectively, and the eigenvalues of Sw(X), which are the eigenvalues of the
switching class of graphs associated to Sw(X). We call the eigenvalues of
the switching class of X the nontrivial eigenvalues of the two-graph Sw(X).

A regular two-graph is a two-graph with only two nontrivial eigenvalues.
Hence a two-graph is regular if the corresponding switching class of graphs
has only two distinct eigenvalues. Lemma 2.5 implies that if a set of equian-
gular lines meets the absolute bound or Theorem 2.2 or the relative bound
of Theorem 2.3, then the corresponding two-graph has only two nontrivial
eigenvalues, and hence it is a regular two-graph. In fact, the converse is also
true, as the next lemma shows.

2.7 Lemma. A two-graph has only two nontrivial eigenvalues if and only
if the set of equiangular lines it determines meets the relative bound of The-
orem 2.3.

Proof: If there is a set of equiangular lines which meets the relative bound,
then by Theorem 2.3, I is in the span of the projections onto the lines, and
so by Lemma 2.5, the Seidel matrix of any set of unit vectors spanning the
lines has just two eigenvalues. These are the eigenvalues of the switching
class of the associated graph, so the two-graph determined by this set of
equiangular lines has just two nontrivial eigenvalues.

Conversely, suppose that Γ is a two-graph on n vertices with only two
nontrivial eigenvalues, and that the set of equiangular lines that it deter-
mines lies in Rd and has mutual angle arccos(α). Let S be the Seidel matrix
for a set Ω = {x1, x2, . . . , xn} of unit vectors spanning these lines. We
showed in Section 2.2 that the least eigenvalue of S is −1/α with multiplic-
ity n− d. Let θ be the other eigenvalue. Since S is symmetric, it is similar
to its diagonal matrix D of eigenvalues. Since tr(D) = tr(S) = 0, the sum
of the eigenvalues of S is zero. Hence

− 1
α

(n− d) + θd = 0,
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which implies that

θ =
n− d

αd
.

Now suppose that 1/α2 > d and let X1, X2, . . . , Xn be the projections
onto the set of n equiangular lines. Then Xi = xix

T
i , for each i. By Theo-

rem 2.3,

n ≤ d− dα2

1− dα2
,

and equality holds if and only if
n∑

i=1

Xi =
n

d
I.

Let U be the d× n matrix with x1, x2, . . . , xn as its columns. Then

UUT =
n∑

i=1

xix
T
i =

n∑

i=1

Xi.

Also,
UT U = I + αS

is the Gram matrix for the vectors in Ω. By Lemma 2.4, UUT and UT U
have the same nonzero eigenvalues with the same multiplicities. Since S has
eigenvalues −1/α and n−d

dα with multiplicities n−d and d, respectively, UT U
has eigenvalues 0 and n/d with multiplicities n−d and d, respectively. This
implies that the d × d matrix UUT has eigenvalue n/d with multiplicity d.
We must have that

UUT =
n∑

i=1

Xi =
n

d
I,

and so the relative bound of Theorem 2.3 holds with equality.

The following result is immediate.

2.8 Theorem. Let 0 < α < 1 and let d be an integer such that d ≥ 2. Let

n =
d− dα2

1− dα2
.

There exists a set of n equiangular lines in Rd with mutual angle arccos(α)
if and only if there is a regular two-graph on n vertices with least eigenvalue
−1/α of multiplicity n− d.

In Chapter 3, several interesting properties of regular two-graphs will be
established, and we will use these properties to generate feasible parameter
sets for these structures.





Chapter 3

Regular Two-Graphs

3.1 Introduction

In Chapter 2 we showed shows that regular two-graphs determine sets of
equiangular lines which meet the relative bound, so these structures can
help us find large sets of equiangular lines. These graphs are also interesting
combinatorially, as they have many interesting regularity properties. In
this chapter, we discuss some of these properties, and use them to generate
feasible parameter sets for these structures.

In Section 3.2, we define strongly regular graphs and develop some of
their well known properties. In Section 3.3, we provide a proof due to
Godsil and Royle [10] that all of the neighbourhoods of a regular two-graph
are strongly regular with the same parameters, and that there is no regular
two graph on n vertices if n is odd. In Section 3.4, we discuss antipodal
distance-regular graphs and state some of their well known properties. In
Section 3.5, we view regular two-graphs as double covers of the complete
graph, and we show that a two-graph on n vertices is regular if and only
if it is an antipodal distance-regular cover of Kn with diameter three. The
proof of this result is due to Godsil and Hensel [9], and it will provide us
with restrictions on the parameters of any regular two-graph. Finally, in
Section 3.5, we use the properties of regular two-graphs established in the
previous sections to generate feasible parameter sets.

3.2 Strongly Regular Graphs

A graph X which is neither complete nor empty is said to be strongly reg-
ular with parameters (n, k, a, c) if V (X) = n, X is k-regular, every pair of

21
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adjacent vertices has a common neighbours, and every pair of nonadjacent
vertices has c common neighbours.

Example. The 5-cycle C5 is a strongly regular graph with parameters
(5, 2, 0, 1).

Example. The Petersen graph, L(K5), is strongly regular with parameters
(10, 3, 0, 1).

Example. Two families of strongly regular graphs are provided by the line
graphs of Kn and Kn,n. The graph L(Kn) has parameters

(n(n− 1)/2, 2n− 4, n− 2, 4),

and the graph L(Kn,n) has parameters

(n2, 2n− 2, n− 2, 2).

Example. The Paley Graphs: Let q be a prime power such that q ≡ 0 mod
4. The Paley graph P (q) is the graph with vertex set GF (q), the elements
of the finite field of order q, in which two vertices are adjacent if and only
if their difference is a nonzero square in GF (q). The Paley graph P (q) is
strongly regular with parameters

(q, (q − 1)/2, (q − 5)/4, (q − 1)/4).

The complement of a strongly regular graph with parameters (n, k, a, c)
is strongly regular with parameters (n, k, a, c), where

k = n− k − 1,

a = n− 2− 2k + c,

c = n− 2k + a.

A strongly regular graph X is primitive if both X and its complement
are connected. Otherwise X is imprimitive. There is only one class of
imprimitive strongly regular graphs. These are the disconnected graphs,
every component of which is complete, or their complements, the complete
multipartite graphs.

3.1 Lemma. Let X be strongly regular graph with parameters (n, k, a, c).
Then the following statements are equivalent:

(a) X is not connected,
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(b) c = 0,

(c) a = k − 1,

(d) X is isomorphic to mKk−1, for some m > 1.

Proof: Suppose X is not connected and let C be a component of X. If
v ∈ C, then v has no common neighbour with any vertex not in C, so
c = 0. If c = 0, then for any vertex v of X, any two neighbours of v must
be adjacent, so a = k − 1. If a = k − 1, then any component must be
Kk+1. Since X is not complete, there must be at least two components, so
X = mKk+1 for some m > 1, which implies that X is not connected.

The next result from [10] shows that the parameters of a strongly regular
graph are related.

3.2 Lemma. Let X be a strongly regular graph with parameters (n, k, a, c).
Then

k(k − a− 1) = c(n− k − 1).

Proof: A vertex v in V (X) has k neighbours and n−1−k non-neighbours.
We count the number of edges e between the neighbours and non-neighbours
of v in two ways. Each of the k neighbours of v is adjacent to v and to a
neighbours of v, and hence to k − a − 1 non-neighbours of v. Thus e =
k(k − a− 1). Also, each of the n− k − 1 non-neighbours of v is adjacent to
c neighbours of v, so e = c(n− k − 1). Hence

k(k − a− 1) = e = c(n− k − 1),

as required.

Lemma 3.2 gives a simple feasibility condition that must be satisfied
by the parameters of any strongly regular graph X. We can obtain some
stronger feasibility conditions on the parameters by looking at the eigenval-
ues of A(X) and their multiplicities. These values can be computed directly
from the parameters of X. We will make use of the following two results in
[10, page 165]. These are standard results in linear algebra, and are provided
here without proof.

3.3 Lemma. Let X be a graph with adjacency matrix A, and let u and v
be vertices of X. The number of walks from u to v in X of length 2 is the
uv-entry of A2.
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3.4 Lemma. Let A be a real symmetric matrix. If x and y are eigenvectors
of A with different eigenvalues, then 〈x, y〉 = 0 (i.e. x and y are orthogo-
nal).

For an eigenvalue λ of a matrix A, let mλ denote the multiplicity of λ.

3.5 Theorem. Let X be a connected strongly regular graph with parameters
(n, k, a, c), such that c < k. Let

∆ = (a− c)2 + 4(k − c).

Then X has three eigenvalues k, θ1 and τ1, where

θ1 =
1
2

(
(a− c) +

√
∆

)
, τ1 =

1
2

(
(a− c)−

√
∆

)
,

with multiplicities mk = 1,

mθ1 =
(n− 1)τ1 + k

τ1 − θ1
, mτ1 =

(n− 1)θ1 + k

θ1 − τ1
.

Proof: Let A be the adjacency matrix of X. By Lemma 3.3, the uv-entry
of A2 is the number of walks of length 2 from u to v. Since X is strongly
regular, this number is completely determined by whether u and v are equal,
adjacent, or distinct and nonadjacent. We have

A2
uv =





k, if u = v,
a, if uv ∈ E(X),
c, if u 6= v and uv 6∈ E(X).

Thus
A2 = kI + aA + c(J − I −A),

which implies that

A2 − (a− c)A− (k − c)I = cJ. (3.1)

We will use this equation to find the eigenvalues of A. Now X is k-regular,
so 1 is an eigenvector of A with eigenvalue k, and since X is connected, the
eigenspace of A associated to the eigenvalue k is spanned by 1, so mk = 1.
Let z be an eigenvector of A with eigenvalue λ, where λ 6= k. Then by
Lemma 3.4, 1T z = 0, so Jz = 0. Hence

A2z − (a− c)Az − (k − c)Iz = cJz = 0,
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and so
λ2 − (a− c)λ− (k − c) = 0. (3.2)

Thus the eigenvalues of A not equal to k are the zeroes of the quadratic
in Equation 3.2. Since A is a real symmetric matrix, these zeroes are both
real. Denote the two real zeroes of this quadratic by θ1 and τ1. Then

θ1 =
1
2

(
(a− c) +

√
∆

)
, τ1 =

1
2

(
(a− c)−

√
∆

)
.

Now since θ1τ1 = c− k and c < k, θ1 and τ1 are nonzero with opposite sign,
and θ1 > τ1.

To find the multiplicities of the eigenvalues, observe that the sum of all
the eigenvalues is equal to tr(A), which is 0. Thus

θ1mθ1 + τ1mτ1 + k = 0.

Also, since there are n eigenvalues, we have

mθ1 + mτ1 + 1 = n.

Solving this system of two linear equations gives the required values for mθ1

and mτ1 .

We can also compute the multiplicities mθ1 and mτ1 directly from the
parameters (n, k, a, c) of the strongly regular graph X. Since

(θ1 − τ1)2 = (θ1 + τ1)2 − 4θ1τ1 = (a− c)2 + 4(k − c) = ∆,

we can substitute the values for θ1 and τ1 in Theorem 3.5 into the expressions
for mθ1 and mτ1 to obtain

mθ1 =
1
2

(
(n− 1)− 2k + (n− 1)(a− c)√

∆

)

and

mτ1 =
1
2

(
(n− 1) +

2k + (n− 1)(a− c)√
∆

)
.

Given a parameter set (n, k, a, c), we can compute mθ1 and mτ1 using the
above equations. If the results are not positive integers, there can be no
strongly regular graph with these parameters. This yields a powerful feasi-
bility condition.

Theorem 3.5 also shows that if k 6= c, then a connected strongly regular
graph X with parameters (n, k, a, c) has exactly three distinct eigenvalues.
The following result in [10] shows that for regular connected graphs, the
converse is also true.
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3.6 Lemma. A connected regular graph with exactly three distinct eigenval-
ues is strongly regular.

Proof: Suppose X is connected and k-regular with eigenvalues k, θ1 and
τ1. Let A be the adjacency matrix of X. Set

M :=
1

(k − θ1)(k − τ1)
(A− θ1I)(A− τ1I).

Then if x is an eigenvector of A with eigenvalue θ1 or τ1, then Mx is the zero
vector, and if x is a constant vector, Mx = x. Hence all of the eigenvalues
of M are equal to 0 or 1, and any eigenvector of M with eigenvalue θ1 or
τ1 lies in the kernel of M . Hence rk(M) = mk, which is equal to 1 since X
is connected. Since M is symmetric, 1T M = M1 = 1. We must have that
M = 1

nJ .

Since M is a quadratic matrix polynomial in A, the fact that M = 1
nJ

implies that A2 is a linear combination of the matrices I, J , and A. Thus
we can write A2 as a linear combination of the matrices I, A, and J−I−A.
Hence the uv-entry of A2 is determined only by whether the vertices u and
v are equal, adjacent, or distinct and nonadjacent. By Lemma 3.3, the uv-
entry of A2 is the number of common neighbours of u and v. Hence X is
strongly regular.

We can obtain the parameters (n, k, a, c) of a strongly regular graph X
directly from the eigenvalues of X, as the next result shows.

3.7 Lemma. Let X be a connected strongly regular graph with parameters
(n, k, a, c) and eigenvalues k, θ1 and τ1. Then

(1) n =
(k − θ1)(k − τ1)

k + θ1τ1
,

(2) a = k + θ1 + τ1 + θ1τ1,

(3) c = k + θ1τ1.

Proof: Substituting the expressions for θ1 and τ1 given in Theorem 3.5,
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Equations (2) and (3) can be easily verified. These imply that

(k − θ1)(k − τ1)
k + θ1τ1

= (1/c)
[
k2 − θ1k − τ1k + θ1τ1

]

= (1/c)
[
(c− θ1τ1)2 − θ1(c− θ1τ1)− τ1(c− θ1τ1) + θ1τ1

]

= (1/c) [(c− θ1τ1)(c− θ1τ1 − θ1 − τ1) + θ1τ1]
= (1/c) [(c− (c− k))(c + (k − a)) + (c− k)]
= (k/c)(k − a− 1) + k + 1
= (n− k − 1) + k + 1 (by Lemma 3.2)
= n.

This proves (1).

We can get another feasibility condition on the parameters of a strongly
regular graph from the inequalities known as the Krein bounds. The proof
of this result can be found in [10, page 231], and it relies on the Cauchy-
Schwarz inequality.

3.8 Theorem. Let X be a primitive strongly regular graph with parameters
(n, k, a, c) and eigenvalues k, θ1 and τ1. Then

θ1τ1
2 − 2θ1

2τ1 − θ1
2 − kθ1 + kτ1

2 + 2kτ1 ≥ 0,

and
θ1

2τ1 − 2θ1τ1
2 − τ1

2 − kτ1 + kθ1
2 + 2kθ1 ≥ 0.

If the first inequality is tight, then k ≥ mθ1. If the second inequality is tight,
then k ≥ mτ1.

In the next section, we show that the neighbourhoods of a regular two-
graph are all strongly regular with the same parameters. We will use the
feasibility conditions on these strongly regular neighbourhoods obtained in
this section to restrict the parameters of regular two-graphs.

3.3 Properties of Regular Two-Graphs

The switching graphs of the complete graph and the empty graph are regu-
lar two-graphs, and the neighbourhoods of these two-graphs are all complete
or empty, respectively. We call these two-graphs trivial. In this section, we
provide a proof due to Godsil and Royle in [10] that the neighbourhoods of
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nontrivial regular two-graphs are all strongly regular with the same param-
eters, and we show how these parameters are related to the parameters of
the two-graph. First, we require the following standard result from linear
algebra.

3.9 Lemma. Let A be a real symmetric matrix, and let p(x) be the charac-
teristic polynomial of A. Then p(A) = 0.

3.10 Theorem. Let Γ be a nontrivial two-graph on n + 1 vertices. Then
the following statements are equivalent:

(a) Γ is a regular two-graph,

(b) All of the neighbourhoods of Γ are regular,

(c) All of the neighbourhoods of Γ are (n, k, a, c)-strongly regular graphs
with k = 2c,

(d) One neighbourhood of Γ is a (n, k, a, c)-strongly regular graph with k =
2c.

Proof: (a)⇒(b): Suppose Γ is a regular two-graph. Let S be the Seidel
matrix of some neighbourhood of Γ. Adjoining an isolated vertex v to this
neighbourhood, we obtain a graph X such that Γ = Sw(X), and

T =
(

0 −1T

−1 S

)

is the Seidel matrix of X. Since Γ is a regular two-graph, T has only two
eigenvalues, and so its characteristic polynomial is quadratic with two real
zeroes. Thus by Lemma 3.9, T satisfies an equation of the form

T 2 + aT + bI = 0,

for some constants a and b. Since

0 = T 2 + aT + bI =
(

n + b (−1T S − a1T )
−S1− a1 (J + S2 + aS + bI)

)
,

we see that −S1 − a1 = 0, and hence S1 = −a1. This implies that S has
constant row sum −a, and hence S is the Seidel matrix of a regular graph.
Thus every neighbourhood of Γ is regular.

(b)⇒(c) Let X be a k-regular neighbourhood of Γ, and let v ∈ V (X).
Let N(v) and N(v) denote the neighbourhood of v in X and its complement
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in X, respectively. Since Γ is nontrivial, both N(v) and N(v) are nonempty,
and

V (X) = {v} ∪N(v) ∪N(v).

Then (X ∪K1)N(v) = Y ∪K1, for some neighbourhood Y of Γ, and both X
and Y are k-regular.

Let w be the isolated vertex in X ∪K1. Then in Y ∪K1, the vertex v is
now isolated, w is adjacent to every vertex in N(v), and the edges between
N(v) and N(v) have been complemented.

Consider a vertex in N(v), and suppose it is adjacent to r vertices of
N(v) in X. Then its valency in Y is

k + |N(v)| − 2r = k,

so r = |N(v)|/2. Thus every vertex in N(v) is adjacent to the same number
of vertices in N(v), and hence the same number of vertices in N(v).

Now consider a vertex in N(v), and suppose it is adjacent to s vertices
of N(v) in X. Then its valency in Y is

k + |N(v)| − 2s = k,

so |N(v)|/2 = k/2 = s. Therefore, every vertex in N(v) is adjacent to k/2
vertices in N(v).

Since v was an arbitrary vertex of X, we must have that X is strongly
regular with the same parameters (n, k, a, c), with k = 2c, as required.

The fact that (c) implies (d) is obvious.
(d)⇒(a): Let X be a strongly regular neighbourhood of Γ with param-

eters (n, k, a, c), where k = 2c. Let A be the adjacency matrix of X and
suppose that A has eigenvalues k, θ1 and τ1. Then S = I + 2A − J is the
Seidel matrix of X. Now adjoin an isolated vertex to X to form the graph
X ∪K1. This graph has Seidel matrix

T =
(

0 −1T

−1 S

)
,

and Sw(X ∪ K1) = Γ. If z is an eigenvalue of S orthogonal to 1, with
eigenvalue λ, then

Tz =
(

0 −1T

−1 S

)(
0
z

)
=

( −1T z
Sz

)
= λ

(
0
z

)
,

and thus (0, zT )T is an eigenvalue of T with the same eigenvalue. There
are at least n− 1 eigenvectors of A which are orthogonal to 1, and they all
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correspond to eigenvalue θ1 or τ1. Hence there are at least n−1 eigenvectors
of S = I +2A−J which are orthogonal to 1. Therefore, T has at least n−1
eigenvectors with eigenvalues θ = 1 + 2θ1 or τ = 1 + 2τ1.

The above partition of the matrix T is equitable, with quotient matrix

Q =
(

0 −n
−1 −(n− 1− 2k)

)
.

Therefore, any eigenvector of Q yields an eigenvector of T which is constant
on the two cells of the partition. The n − 1 eigenvectors we have already
found are all of the form (0, zT )T where z is orthogonal to 1, so none of
these are constant on this partition of T . Hence any eigenvector of Q is not
among them. Thus the remaining two eigenvalues of T are precisely the two
eigenvalues of Q. Using k = 2c and Lemma 3.7, we have k − c = −θ1τ1,
a− c = θ1 + τ1. Hence

n = −(2θ1 + 1)(2τ1 + 1),
k = −2θ1τ1,

a = θ1 + τ1 − θ1τ1,

c = −θ1τ1.

Thus

Q =
(

0 (2θ1 + 1)(2τ1 + 1)
−1 2(θ1 + τ1 + 1)

)
,

which has eigenvalues 2θ1 + 1 = θ and 2τ1 + 1 = τ . Thus T has precisely
two eigenvalues. Since the eigenvalues of T are the nontrivial eigenvalues of
Γ, we must have that Γ is a regular two-graph.

3.11 Corollary. A nontrivial regular two-graph has an even number of ver-
tices.

Proof: Let Γ be a nontrivial regular two-graph on n + 1 vertices with
nontrivial eigenvalues θ and τ . The previous proof shows that θ = 2θ1 + 1
and τ = 2τ1 + 1, where θ1 and τ1 are the two eigenvalues of any strongly
regular neighbourhood X of Γ which are not equal to the valency of X.
Also,

n = −(2θ1 + 1)(2τ1 + 1) = −(4θ1τ1 + 2(θ1 + τ1) + 1).

Since the entries of A(X) are integers, θ1 and τ1 are algebraic integers.
Hence they are either integers or they are algebraically conjugate. In either
case, both θ1τ1 and θ1 + τ1 are integers, and hence n is odd. Thus n + 1 is
even.
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Theorem 3.10 shows that we can construct a regular two-graph from any
strongly regular graph X with parameters (n, k, a, c) with k = 2c. Simply
adjoin an isolated vertex to X, then Sw(X ∪K1) is a regular two-graph.

Example. The 5-cycle is strongly regular with parameters (5, 2, 0, 1). Hence
Sw(C5 ∪K1) is a regular two-graph on 6 vertices.

Example. The Paley graphs P (q) described in Section 3.2 are strongly
regular with parameters

(n, k, a, c) = (q, (q − 1)/2, (q − 5)/4, (q − 1)/4),

Hence Sw(P (q)∪K1) is a regular two-graph on q +1 vertices, for any prime
power q with q ≡ 1 mod 4. Using the equations of Lemma 3.5, we see that
the eigenvalues of the Paley graph P (q) are k = (q− 1)/2, with multiplicity
1, and θ1 = (−1 +

√
q)/2 and τ1 = (−1 − √q)/2 with equal multiplicities

(q−1)/2. Thus the two eigenvalues of Sw(PG(q)) are θ =
√

q and τ = −√q
with equal multiplicities (q + 1)/2. Note that C5 is the Paley graph P (5).

The proof of Theorem 3.10 also shows how to find the eigenvalues of the
strongly regular neighbourhoods of a regular two-graph from its nontrivial
eigenvalues θ and τ . If the eigenvalues of the strongly regular neighbour-
hoods are k, θ1 and τ1, where k is the valency, then

θ1 =
1
2
(θ − 1), τ1 =

1
2
(τ − 1), k = −2θ1τ1. (3.3)

Now all of the parameters of the strongly regular neighbourhoods can be
computed using Lemma 3.7.

In Section 3.5 we view a regular two-graph as an antipodal distance-
regular graph of diameter three. This approach will help us generate feasible
parameter sets for regular two-graphs in Section 3.6. First, we will look at
properties of general antipodal distance-regular graphs.

3.4 Antipodal Distance-Regular Graphs

A connected graph X is distance-regular if for any two vertices u and v, the
number of vertices at distance i from u and j from v depends only on i, j,
and the distance between u and v. Since u may equal v, X is necessarily
regular. Distance-regular graphs have important connections to other areas
of combinatorics, including finite geometry and coding theory. A distance-
regular graph of diameter two is strongly regular.
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A graph X of diameter d is antipodal if the vertices at distance d from a
given vertex are all at distance d from each other. The antipodal distance-
regular graphs are covering graphs. The antipodal distance-regular graphs
of diameter one are the complete graphs, and those of diameter two are the
complete bipartite graphs. Thus the antipodal distance-regular graphs of
diameter three are the first nontrivial case. These graphs cover the complete
graph.

We will be interested in two-fold coverings of the complete graph, as
any two-graph on n vertices is a two-fold cover of Kn of diameter three.
We will show that the two-graph is regular if and only if it is a distance-
regular double cover of Kn, and develop conditions that the parameters
of such a cover must satisfy. First, we establish some basic properties of
antipodal distance-regular graphs and covering graphs. The exposition of
these properties is based on a survey of this topic in [9].

Let X be a distance-regular graph of diameter d. If u and v are two
vertices of G at distance i, let pi

j,k denote the number of vertices at distance
j from u and k from v. The numbers pi

j,k (for 0 ≤ i, j, k ≤ d) are called
the intersection numbers of X. Let ci, ai, and bi denote the number of
neighbours of v at distance i− 1, i, and i + 1 from u, respectively (these are
the intersection numbers pi

i−1,1, pi
i,1, and pi

i+1,1). These numbers determine
all of the intersection numbers of X. Since ai + bi + ci = b0, the valency of
X, we only need the numbers in the set

{b0, . . . , bd−1; c1, . . . , cd},
called the intersection array of X. If X is antipodal, then “being at distance
d” induces an equivalence relation on the vertices of X, and the equivalence
classes are called fibres.

Suppose X is an antipodal distance-regular graph with diameter d > 2
and intersection array

{b0, . . . , bd−1; c1, . . . , cd}.
The following list of fundamental properties of antipodal distance-regular
graphs summarize results in [1] and [8].

(a) If there is an edge between two given fibres, then each vertex in one
fibre has a unique neighbour in the other.

(b) If the distance between two fibres is i, then each vertex in the first
fibre is at distance i from a vertex in the second fibre, and at distance
d− i from every other vertex in the second fibre.
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(c) Let Q be the graph which has the fibres of X as vertices, with two
fibres adjacent if and only if there is an edge between them in X. Then
Q is a distance regular graph with intersection array

{b0, b1, . . . , bm−1; 1, c2, . . . , γcm},

where m satisfies d = 2m + 1 or d = 2m, and γ equals the size of a
fibre if d = 2m, and γ = 1 if d = 2m + 1.

(d) Every eigenvalue of Q is also an eigenvalue of X with the same multi-
plicity.

The graph Q is called the antipodal quotient of X.
We now define covering graphs. Let X be a graph, and suppose that

there is a partition Π of V (X) into cells satisfying the following conditions:

(a) each cell is an independent set, and

(b) between any two cells either there are no edges, or there is an induced
matching.

Let X/Π be the graph with the cells of Π as vertices, in which two vertices
are adjacent if and only if there is an induced matching between them. Then
we say that X is a covering graph of X/Π. The map sending each vertex
of X to its corresponding cell in X/Π is called the covering map, and the
cells are called fibres. If X/Π is connected, then each fibre has the same
size, which is called the index of the covering. If the index is r, we call X
an r-fold covering graph of X/Π.

An antipodal distance-regular graph X is an example of a covering graph,
as it covers Q, the antipodal quotient of X. The switching graph of any
graph on n vertices is a two-fold cover of Kn, since there is an induced
matching between every fibre in this graph. If it is connected, it has diameter
three. In the next section we show that a two-graph is an antipodal distance-
regular graph if and only if it is a regular two-graph.

3.5 Distance-Regular Double Covers of Kn

The antipodal distance-regular graphs of diameter three are of interest to us
because they cover the complete graph, and if they have index two then they
are regular two-graphs. We shall prove this, and show that the intersection
arrays of distance-regular double covers are determined by three parameters,
including the index. Thus the intersection arrays for regular two-graphs on
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n vertices are completely determined by two parameters. We will derive
some feasibility conditions that these parameters must satisfy. First, we
discuss antipodal distance-regular r-fold covers of Kn in general.

Let X be an antipodal distance-regular graph of diameter three. Then
X is an r-fold cover of a graph of diameter one, namely Kn, for some r
and n. Hence X has valency n − 1, and |V (X)| = rn. Let v ∈ V (X), and
let Xi(v) denote the set of vertices of X at distance i from v. Since X is
antipodal of diameter three, the vertices of X3(v) must be at distance three
from each other. Thus

c3 = n− 1, b2 = 1.

By counting the edges between X2(v) and X3(v) in two ways, we find that
there are (r − 1)(n− 1) vertices in X2(v). Now counting the edges between
X1(v) and X2(v) in two ways, we find that

(n− 1)b1 = (r − 1)(n− 1)c2,

so
b1 = (r − 1)c2.

Also, b0 is the valency of X, so b0 = n − 1. Thus the intersection array of
X is

{n− 1, (r − 1)c2, 1; 1, c2, n− 1},
and hence is completely determined by the parameter set (n, r, c2). Since
distance-regular two-graphs are antipodal distance-regular two-fold covers of
Kn, their intersection arrays are completely determined by the parameters
(n, c2).

Now c2 is the number of common neighbours of two vertices at distance
two in X. Also,

a1 = n− 2− (r − 1)c2 = n− 2− c2

is the number of common neighbours of two adjacent vertices of X. The
next result due to Godsil and Hensel in [9] gives a useful characterization of
antipodal distance-regular two-fold covers of Kn.

3.12 Lemma. Let X be a two-fold covering graph of Kn, and let c2 be a pos-
itive integer. Then X is an antipodal distance-regular cover with parameters
(n, c2) if and only if two nonadjacent vertices from different fibres always
have c2 common neighbours.
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Proof: Suppose X is an antipodal distance regular two-fold cover of Kn

with parameters (n, c2). Let u and v be two nonadjacent vertices from dif-
ferent fibres, and let U and V be the fibres containing u and v, respectively.
Then u is adjacent to a vertex of V and v is adjacent to a vertex of U , and
hence u must be at distance two from v. Thus they have c2 neighbours in
common.

Conversely, let X be a two-fold cover of Kn, and suppose that any two
nonadjacent vertices from different fibres have c2 neighbours in common.
Let F = {u, u′} be a fibre of X. Since the fibres are independent sets, u and
u′ cannot be adjacent. Since there is an induced matching between any two
fibres, they cannot be at distance two. Now let v be a neighbour of u. Then
u lies in a different fibre, and is not adjacent to u′. Thus v has c2 common
neighbours with u′. Hence U and u′ are at distance three.

If w 6∈ F , then since X covers Kn, it must have a neighbour in F . Thus
the other vertex of F must be at distance two from w. Hence the vertices
at distance two from u are precisely the vertices adjacent to the vertex in
F \ {u}. Since v is adjacent to u, and is not adjacent to u′, it has exactly
c2 neighbours in common with u′, and hence v has exactly c2 neigbours
at distance two from u. Thus it must have exactly (n − 1) − 1 − c2 = a1

neighbours adjacent to u.
We conclude that X is an antipodal distance-regular graph with inter-

section array
{n− 1, c2, 1; 1; c2, n− 1},

as required.

Notice that Lemma 3.12 implies that any distance-regular two-fold cover of
Kn with diameter three must be antipodal.

We can compute the eigenvalues of any distance-regular two-fold cover
X of Kn and their multiplicities directly from the parameters n and c2,
as the next lemma shows. Since Kn is the antipodal quotient of X, the
eigenvalues of Kn are also eigenvalues of X with the same multiplicities.
The computations used to find the other eigenvalues of X are similar to
those used to find the eigenvalues of a strongly regular graph in Lemma 3.5,
and so they are omitted here.

3.13 Lemma. Let X be a distance-regular two-fold cover of Kn with param-
eters (n, c2). Let a1 = n−2−c2, let δ = a1−c2, and let ∆ = −δ2 +4(n−1).
Then −1 and n − 1 are eigenvalues of X with multiplicities 1 and n − 1,
respectively, and X has only two other eigenvalues, θ and τ , given by

θ =
1
2

(
δ +

√
∆

)
, τ =

1
2

(
δ −

√
∆

)
,
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with
mθ =

nτ

τ − θ
, mτ =

nθ

θ − τ
.

The next result shows that regular two-graphs are antipodal distance-
regular two-fold covers of Kn.

3.14 Theorem. A graph Γ is a regular two-graph on n vertices if and only
if it is an antipodal distance-regular two-fold cover of Kn.

Proof: If Γ is an antipodal distance-regular two-fold cover of Kn, then there
is an induced matching between every two fibres, and so it is the switching
graph of some graph X on n vertices. Lemma 3.13 shows that Γ has only
two nontrivial eigenvalues, and hence it is a regular two-graph.

Conversely, suppose that Γ is a regular two-graph on n vertices. Then
it is the switching graph of some graph X on n vertices, so it is a two-fold
cover of Kn with n fibres of size two, each of the form {(v, 0), (v, 1)} for some
vertex v in V (X). Since Γ is regular, Theorem 3.10 implies that all of its
neighbourhoods are strongly regular with the same parameters (n−1, k, a, c).
Let (v, i) and (w, j) be nonadjacent vertices of Γ from different fibres. We
show that (v, i) and (w, j) have c2 := n− k − 2 common neighbours.

Since there is an induced matching between every two fibres, we must
have that {(w, j), (v, 1 − i)} ∈ E(Γ). The neighbourhoods of (v, i) and
(v, 1 − i), are disjoint (n − 1, k, a, c)-strongly regular graphs, so (w, j) is
adjacent to (v, 1−i) and k neighbours of (v, 1−i). The other (n−1)−(k+1)
neighbours of (w, j) must be in the neighbourhood of (v, i), and hence (w, j)
and (v, i) have n− k − 2 = c2 common neighbours.

Hence every two nonadjacent vertices of Γ from different fibres have c2

common neighbours, so by Lemma 3.12, Γ is an antipodal distance-regular
two-fold cover of Kn.

Theorem 3.14 shows that the distance-regular two-fold covers of Kn are
all of the regular two-graphs. In the next section, we generate parameter
sets for regular two-graphs by looking at several feasibility conditions on the
parameters of distance-regular two-fold covers of the complete graph.

3.6 Parameter Sets

In this section we will generate feasible parameter sets for regular two-
graphs, by viewing them as distance-regular two-fold covers of the complete
graph.
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We now develop conditions that the parameters of any distance-regular
two-fold cover Γ of Kn must satisfy. Requiring that the multiplicities mθ

and mτ of the two nontrivial eigenvalues θ and τ of Γ are integers gives a
strong feasibility condition on the possible values of n and c2. The formulas
for these multiplicities given in Lemma 3.13 imply that θ − τ must divide
both nθ and nτ . The eigenvalues θ and τ are also constrained, as the next
lemma shows.

3.15 Lemma. Let Γ be a distance-regular two-fold cover of Kn with parame-
ters (n, c2) and nontrivial eigenvalues θ and τ , with θ > τ . Let a1 = n−2−c2

and let δ = a1 − c2. If δ = 0, then θ = −τ =
√

n− 1. If δ 6= 0, then θ and
τ are odd integers.

Proof: Using the formulas for θ and τ given in Lemma 3.13, we verify that

θτ = 1− n, θ + τ = δ.

Hence, if δ = 0, θ = −τ , so θτ = −θ2 = 1− n, and thus θ =
√

n− 1 = −τ ,
as required. If δ 6= 0, then if mθ and mτ are integers, we must have that
θ and τ are integers. By Corollary 3.11, n is even, and thus n − 1 is odd.
Hence θ and τ are divisors of an odd integer, so θ and τ must be odd.

The following result due to Taylor [21] eliminates several possible pa-
rameter sets for regular two-graphs with non-integral eigenvalues.

3.16 Lemma. Let Γ be a regular two-graph with nontrivial eigenvalues θ
and τ . If θ and τ are not rational, then n− 1 is a sum of two squares.

The subgraph Γv induced by the neighbourhood of any vertex v in an
(n, c2) distance-regular two-fold cover Γ of Kn is regular with valency a1 =
n − 2 − c2. In fact, Theorem 3.10 implies that X is strongly regular with
parameters (n − 1, a1, a, a1/2), for some nonnegative integer a. Since X
cannot be complete, we must have 0 ≤ a1 ≤ n − 3. If a1 = 0, then the
neighbourhood Γv is an empty graph, for every vertex v of Γ. In this case
Γ is the complete bipartite graph Kn,n, which is a trivial regular two-graph.
Hence we require that 1 ≤ a1 ≤ n − 3. Since the sum of the degrees of the
vertices of Γv must be even, (n− 1)a1 is even, so since n− 1 is odd, a1 must
be even. Thus

2 ≤ a1 ≤ n− 4.

Since c2 = n− 2− a1, c2 must also be even, and

2 ≤ c2 ≤ n− 4.
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In Section 3.2, we developed several conditions on the parameters of any
strongly regular graph. We can apply these to the strongly regular neigh-
bourhoods of Γ. In particular, strong feasibility conditions on the eigenvalues
a1, θ1, τ1 of these strongly regular neighbourhoods and their multiplicities
arise from the Krein bounds of Lemma 3.8. The eigenvalues θ1 and τ1 of
any strongly regular neighbourhood of Γ which are not equal to the valency
a1 can be computed from the nontrivial eigenvalues of Γ. They are given by

θ1 =
1
2
(θ − 1), τ1 =

1
2
(τ − 1).

The rest of the parameters of the strongly regular neighbourhoods can now
be computed using the formulas of Lemma 3.7, and the multiplicities mθ1

and mτ1 can be computed using the formulas in Lemma 3.5. The parameters
(n− 1, a1, a, a1/2) of the strongly regular neighbourhoods must also satisfy
the relation of Lemma 3.2, namely

a1(a1 − a− 1) =
a1

2
((n− 1)− a1 − 1).

Let Γ be a regular two-graph with parameters (n, a1, c2; θ,mθ, τ, mτ ), and
let (n, a1, a, a1/2; θ1,mθ1 , τ1,mτ1) be the parameters of the strongly regular
neighbourhoods of Γ. The feasibility conditions on the parameters of a
regular two-graph are summarized below.

(a) n is even,

(b) 2 ≤ a1 ≤ n− 4 and a1 is even,

(c) 2 ≤ c2 ≤ n− 4 and c2 is even,

(d) θ and τ are odd divisors of 1− n, or θ = −τ =
√

n− 1,

(e) If θ = −τ =
√

n− 1, then n− 1 is the sum of two squares.

(f) (θ − τ) is a divisor of both nθ and nτ ,

(g) a1(a1 − a− 1) = (a1/2)((n− 1)− a1 − 1),

(h) θ1τ1
2 − 2θ1

2τ1 − θ1
2 − a1θ1 + a1τ1

2 + 2a1τ1 ≥ 0. If this inequality is
tight, then a1 ≥ mθ1 .

(i) θ1
2τ1 − 2θ1τ1

2 − τ1
2 − a1τ1 + a1θ1

2 + 2a1θ1 ≥ 0. If this inequality is
tight, then a1 ≥ mτ1 .
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Conditions (h) and (i) are the Krein bounds of Lemma 3.8 applied to the
eigenvalues of the strongly regular neighbourhoods of Γ.

Given n and θ, every parameter in the parameter set

(n, a1, c2; θ,mθ, τ, mτ )

for a regular two-graph Γ can be computed, along with every parameter in
the corresponding parameter set

(n, a1, a, a1/2; θ1,mθ1 , τ1, mτ1)

of the strongly regular neighbourhoods of Γ. We can compute these values
using formulas derived in the previous sections as follows: Let n and θ be
given. Then

τ = (1− n)/θ,

τ1 = (τ − 1)/2,

θ1 = (θ − 1)/2,

a1 = −2θ1τ1,

c2 = n− 2− a1,

a = θ1 + τ1 − θ1τ1,

mθ =
nτ

τ − θ
,

mτ =
nθ

θ − τ
,

mθ1 =
(n− 1)τ1 + a1

τ1 − θ1
,

mτ1 =
(n− 1)θ1 + a1

θ1 − τ1
.

To generate the feasible parameter sets for regular two-graphs on n vertices
for n ≤ N , for each even integer n ≤ N , and each odd divisor θ of n, compute
the rest of the parameters using the formulas listed above. If

√
n− 1 is not an

integer, also compute a parameter set for θ =
√

n− 1. This will generate all
of the possible parameter sets for regular two-graphs which satisfy feasibility
conditions (a) and (d), along with the parameter sets of their strongly regular
neighbourhoods. Test each of these parameter sets to see if they satisfy each
of the other feasibility conditions. For n ≤ 100, the feasible parameter sets
for regular two-graphs on n vertices are listed in Tables 3.1 and 3.2. Feasible
parameter sets for regular two-graph with integer eigenvalues are listed in
Table 3.1, and those with irrational eigenvalues are listed in Table 3.2.
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Regular Two-Graph Strongly Regular Neighbourhhood
(n, a1, c2; θ, mθ, τ,mτ ) (n− 1, a1, a, a1

2 ; θ1, mθ1 , τ1,mτ1)

(10, 4, 4; 3, 5,−3, 5) (9, 4, 1, 2; 1, 4,−2, 4)
(16, 6, 8; 3, 10,−5, 6) (15, 6, 1, 3; 1, 9,−3, 5)
(16, 8, 6; 5, 6,−3, 10) (15, 8, 4, 4; 2, 5,−2, 9)

(26, 12, 12; 5, 13,−5, 13) (25, 12, 5, 6; 2, 12,−3, 12)
(28, 10, 16; 3, 21,−9, 7) (27, 10, 1, 5; 1, 20,−5, 6)
(28, 16, 10; 9, 7,−3, 21) (27, 16, 10, 8; 4, 6,−2, 20)
(36, 16, 18; 5, 21,−7, 15) (35, 16, 6, 8; 2, 20,−4, 14)
(36, 18, 16; 7, 15,−5, 21) (35, 18, 9, 9; 3, 14,−3, 20)
(50, 24, 24; 7, 25,−7, 25) (49, 24, 11, 12; 3, 24,−4, 24)
(64, 30, 32; 7, 36,−9, 28) (63, 30, 13, 15; 3, 35,−5, 27)
(64, 32, 30; 9, 28,−7, 36) (63, 32, 16, 16; 4, 27,−4, 35)
(76, 32, 42; 5, 57,−15, 19) (75, 32, 10, 16; 2, 56,−8, 18)
(76, 42, 32; 15, 19,−5, 57) (75, 42, 25, 21; 7, 18,−3, 56)
(82, 40, 40; 9, 41,−9, 41) (81, 40, 19, 20; 4, 40,−5, 40)
(96, 40, 54; 5, 76,−19, 20) (95, 40, 12, 20; 2, 75,−10, 19)
(96, 54, 40; 19, 20,−5, 76) (95, 54, 33, 27; 9, 19,−3, 75)
(100, 48, 50; 9, 55,−11, 45) (99, 48, 22, 24; 4, 54,−6, 44)
(100, 50, 48; 11, 45,−9, 55) (99, 50, 25, 25; 5, 44,−5, 54)

Table 3.1: Parameter Sets for Regular Two-Graphs with Integer Eigenvalues
(for n ≤ 100)
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Regular Two-Graph Strongly Regular Neighbourhhood
(n, a1, c2; θ, mθ, τ, mτ ) (n− 1, a1, a, a1

2 ; θ1,mθ1 , τ1,mτ1)

F (x) := (−1 +
√

x)/2
G(x) := (−1−√x)/2

(6, 2, 2;
√

5, 3,−√5, 3) (5, 2, 0, 1;F (5), 2, G(5), 2)
(14, 6, 6;

√
13, 7,−√13, 7) (13, 6, 2, 3;F (13), 6, G(13), 6)

(18, 8, 8;
√

17, 9,−√17, 9) (17, 8, 3, 4;F (17), 8, G(17), 8)
(30, 14, 14;

√
29, 15,−√29, 15) (29, 14, 6, 7;F (29), 14, G(29), 14)

(34, 16, 16;
√

33, 17,−√33, 17) (33, 16, 7, 8;F (33), 16, G(33), 16)
(38, 18, 18;

√
37, 19,−√37, 19) (37, 18, 8, 9;F (37), 18, G(37), 18)

(42, 20, 20;
√

41, 21,−√41, 21) (41, 20, 9, 10;F (41), 20, G(41), 20)
(46, 22, 22;

√
45, 23,−√45, 23) (45, 22, 10, 11;F (45), 22, G(45), 22)

(54, 26, 26;
√

53, 27,−√53, 27) (53, 26, 12, 13;F (53), 26, G(53), 26)
(58, 28, 28;

√
57, 29,−√57, 29) (57, 28, 13, 14;F (57), 28, G(57), 28)

(62, 30, 30;
√

61, 31,−√61, 30) (61, 30, 14, 15;F (61), 30, G(61), 30)
(66, 32, 32;

√
65, 33,−√65, 33) (65, 32, 15, 16;F (65), 32, G(65), 32)

(74, 36, 36;
√

73, 37,−√73, 37) (73, 36, 17, 18;F (73), 36, G(73), 36)
(86, 42, 42;

√
85, 43,−√85, 43) (85, 42, 20, 21;F (85), 42, G(85), 42)

(90, 44, 44;
√

89, 45,−√89, 45) (89, 44, 21, 22;F (89), 44, G(89), 44)
(98, 48, 48;

√
97, 49,−√97, 49) (97, 48, 23, 24;F (97), 48, G(97), 48)

Table 3.2: Parameter Sets for Regular Two-Graphs with Irrational Eigen-
values (for n ≤ 100)





Chapter 4

Constructing Regular
Two-Graphs

4.1 Introduction

In Chapter 2 it was shown that any set L of n equiangular lines in Rd

corresponds to a two-graph on n vertices, and it Chapter 3 we saw that
this two-graph can be viewed as a double cover of the complete graph on n
vertices. By Theorem 2.8, the two-graph is regular and the double cover is
distance-regular if and only if n meets the relative bound of Theorem 2.3. A
clique of order d in this double cover corresponds to a d-subset of a set Ω of
unit vectors spanning the lines in L, in which the inner product of any two
distinct vectors is positive. Such a d-subset is called a positive basis of Ω.
In Section 4.2 we will see that a positive basis forms a basis of Rd, and then
use linear algebra to characterize the vectors corresponding to vertices of the
double cover which are outside of the clique. Using this characterization, we
obtain a construction for regular two-graphs with cliques of specified order.
We will prove that the existence of such a structure depends on the existence
of an incidence structure with special properties. Quasi-symmetric designs
provide examples of these incidence structures.

In Section 4.3, the set of all feasible parameter sets for regular two-
graphs on n vertices which are candidates for this construction is generated,
for n ≤ 300, and these parameter sets are listed in Table 4.1. Several exam-
ples of regular two-graphs with large cliques are constructed in Section 4.4,
and some arise from quasi-symmetric designs. We discuss some existence
results regarding quasi-symmetric designs due to Calderbank in [3] and [4].
We conclude by posing an open problem regarding when these incidence

43
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structures form 2-designs.
The concept of using a positive basis to characterize the structure of

a regular two-graph containing a clique of specified order is due to Chris
Godsil.

4.2 The Construction

Let 0 < α < 1 and let d and n be integers such that d ≥ 2 and n ≥ 2.
Let Ω be a set of n unit vectors spanning a set of n equiangular lines in Rd

with mutual angle arccos(α). Then for any two distinct vectors x and y of
Ω, 〈x, y〉 = ±α. A positive basis of Ω is a d-subset of Ω in which the inner
product of any two vectors is positive. As the name suggests, a positive
basis of Ω is a basis of Rd. The Gram matrix for a positive basis has a very
simple form, as the next lemma shows.

4.1 Lemma. Let 0 < α < 1 and let n ≥ 2 and d ≥ 2 be integers. Let Ω be a
set of n unit vectors spanning a set of n equiangular lines in Rd with mutual
angle arccos(α). Then a positive basis of Ω is a basis of Rd, and the Gram
matrix for any positive basis of Ω is the d × d matrix G = (1 − α)I + αJ .
Furthermore, G is invertible and

G−1 = ( 1
1−α)I + α

(α−1)(1+(d−1)α)J.

Proof: Suppose that B = {x1, x2, . . . , xd} is a positive basis for Ω. Let L
be the matrix whose columns are the vectors in B. The Gram matrix for
B is G = LT L, in which the ij-th entry is 〈xi, xj〉. Since this value is equal
to 1 if i = j, and α otherwise, G has the required form. Since 1 − α > 0,
the matrix (1 − α)I is positive definite, and since α > 0, the matrix αJ
is positive semidefinite. Thus G is positive definite, and hence invertible.
This implies that L is invertible, so its columns are linearly independent,
and thus the vectors in B form a basis of Rd. Finally, one checks that
G(( 1

1−α)I + α
(α−1)(1+(d−1)α)J) = I. This completes the proof.

In Chapter 2 it was shown that the set Ω corresponds to a two-graph.
This two-graph is the switching graph of the graph X with vertex set
Ω, in which two vectors x and y of Ω are adjacent if 〈x, y〉 = α. If
B = {x1, x2, . . . , xd} is a positive basis of Ω, it forms a clique of order d
in the graph X, and hence it forms two disjoint cliques of order d in the cor-
responding two-graph. Each vector y in Ω \ B satisfies the following three
properties:

(a) 〈y, xi〉 = ±α (for 1 ≤ i ≤ d),
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(b) 〈y, y〉 = 1, and

(c) 〈y, z〉 = ±α, for every z in Ω \B such that z 6= y.

A vector y in Rd which satisfies property (a) is said to be in good position
with respect to the positive basis B. Property (c) says that Ω \B spans an
equiangular set of lines.

If Ω spans a set of equiangular lines which meets the relative bound of
Theorem 2.3, then

|Ω| = n =
d− dα2

1− dα2
,

and by Theorem 2.8, the two-graph corresponding to Ω is regular and has
least eigenvalue −1/α with multiplicity n−d. Hence, given d and α, we can
construct a regular two-graph with a clique of order d by finding a set Ω
of n = d−dα2

1−dα2 equiangular unit vectors in Rd with mutual angle arccos(α),
which contains a positive basis B.

To construct such a set Ω, assume that B = {x1, x2, . . . , xd} is a set of
unit vectors in Rd such that 〈xi, xj〉 = α (for i 6= j), and find a set C of n−d
vectors in Rd \ B which satisfy properties (i), (ii) and (iii). Then B ∪ C is
the required set Ω. Note that it is always possible to find such a set B. The
next two lemmas characterize the feasible sets of n− d vectors in C = Ω \B
and their relationship to one another, and Theorem 4.4 shows that these
vectors form an incidence structure with certain properties.

Before looking at these results, we define a useful function fB on the
vectors in Rd outside of a positive basis B. For a positive basis B of a set
of unit vectors spanning a set of equiangular lines in Rd with mutual angle
arccos(α), let

fB : Rd \B 7→ Rd

be defined by
fB(y) := α−1LT y,

in which L is the matrix whose columns are the vectors in B. Since B is
a basis of Rd, the columns of L are linearly independent, and hence L is
invertible. Thus fB is invertible, and

f−1
B (y) = αL−T y.

4.2 Lemma. Let Ω be a set of unit vectors spanning a set of equiangular
lines in Rd with mutual angle arccos(α). Let B be a positive basis of Ω, and
let G be the Gram matrix of the vectors in B. If y ∈ Ω \B, then fB(y) is a
±1-vector in Rd with
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m =
1
2

(
d−

√
d(d− 1) + (2d− 1)α−1 − (d− 2)α−2 − α−3

)

or d−m entries equal to −1.

Proof: Suppose that B = {x1, x2, . . . , xd} is a positive basis for Ω. Then
by Lemma 4.1, B is a basis of Rd. In particular, each vector y in Ω can be
written as a linear combination of vectors in B, say

y =
d∑

i=1

aixi

for unique real scalars a1, a2, . . . , ad. Furthermore, if y ∈ Ω \B, y is in good
position with respect to B, and hence for each i (1 ≤ i ≤ d) we have

±α = 〈xi, y〉 = xT
i

d∑

j=1

ajxj =
d∑

j=1

aj〈xi, xj〉. (4.1)

Let G be the Gram matrix for B. Then the ij-th entry of G is 〈xi, xj〉, so
Equation 4.1 implies that

[±α,±α, . . . ,±α]T = [〈x1, y〉, 〈x2, y〉, . . . , 〈xd, y〉]T = G[a1, a2, . . . , ad]T ,

and thus
[a1, a2, . . . , ad]T = αG−1ŷ,

in which ŷ is the ±1-vector in Rd whose i-th entry is equal to 1 if 〈xi, y〉 = α,
and −1 if 〈xi, y〉 = −α. If L is the matrix whose columns are the vectors in
B, we have

y = L[a1, a2, . . . , ad]T

= αLG−1ŷ

= αL(LT L)−1ŷ

= αL−T ŷ,

and thus
ŷ = α−1LT y = fB(y).

Hence fB(y) is a ±1-vector in Rd, and

y = αL−T fB(y). (4.2)
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Now suppose y ∈ Ω \B and let m denote the number of negative entries
in fB(y). Since y is a unit vector, Equation 4.2 implies that

1 = 〈y, y〉 = yT y = [α(fB(y))T L−1][αL−T fB(y)],

and hence

1 = α2(fB(y))T (LT L)−1fB(y) = α2(fB(y))T G−1fB(y).

Now substituting the formula for G−1 given in Lemma 4.1 into the above
equation gives

1 = α2(fB(y))T

[
1

1− α
I +

α

(α− 1)(1 + (d− 1)α)
J

]
fB(y)

=
α2

1− α
(fB(y))T fB(y) +

α3

(α− 1)(1 + (d− 1)α)
(1T fB(y))2

=
α2

1− α
d +

α3

(α− 1)(1 + (d− 1)α)
(d− 2m)2. (4.3)

Solving for m in Equation 4.3, we obtain

m =
1
2

(
d±

√
d(d− 1) + (2d− 1)α−1 − (d− 2)α−2 − α−3

)

.

This completes the proof.

In Lemma 4.2, if m is not a positive integer, then there are no unit
vectors in Rd which are in good position with respect to B, so in this case
the maximum size of a set of equiangular unit vectors in Rd with mutual
angle arccos(α) which contains a positive basis is d. (This corresponds to
the trivial regular two-graph, Sw(Kd), the switching graph of the complete
graph on d vertices.) Thus given any pair (d, α) which yields a non-integral
value for m in the formula of Lemma 4.2, we can conclude that there exists no
set of equiangular unit vectors with these parameters meeting the relative
bound of Theorem 2.3, and hence there exists no associated regular two-
graph containing a clique of order d. In the next section, many of the
feasible parameter sets for regular two-graphs in Tables 3.1 and 3.2 will
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be eliminated as candidates for this construction technique based on this
conclusion.

If m is a positive integer in Lemma 4.2, then each unit vector y ∈ Rd \B
which is in good position with respect to B can be written in the form

y = αL−T fB(y),

in which fB(y) is a ±1-vector in Rd with exactly m or d −m entries equal
to −1, and L is the matrix whose columns are the vectors in B. Let Y be
the set of unit vectors in Rd \B which are in good position with respect to
B. If d = 2m, then |Y | =

(
d
m

)
. Otherwise, there are

(
d
m

)
+

(
d

d−m

)
= 2

(
d
m

)
vectors in the set Y . In this case, the set Y can be partitioned into two sets
Y1 and Y2 of equal order, such that for each vector y in Y1, fB(y) contains m
negative entries, and for each vector z in Y2, fB(z) contains d−m negative
entries. Thus Y2 = {−y : y ∈ Y1}.

To construct the desired regular two-graph, let n = d−dα2

1−dα2 and find an
(n−d)-subset C of Y in which the inner product of any two distinct vectors
is equal to ±α. Then Ω = B ∪ C is a set of equiangular unit vectors which
meets the relative bound and contains a positive basis, so it corresponds to
a regular two-graph with a clique of order d. Even for rather small values of
d, finding the set C by brute force can be a formidable task. If d 6= 2m, we
can cut the search space in half by observing that any suitable subset C of
Y = Y1∪Y2 is switching equivalent to a subset C ′ of Y1. To see this, suppose
that C is a subset of Y = Y1 ∪ Y2 which contains some elements of Y2, say
C = C1 ∪ C2 where C1 ⊆ Y1 and C2 ⊆ Y2. Let C ′

2 = {−y : y ∈ C2} and let
C ′ = C1 ∪ C ′

2. Then C ′ ⊆ Y1 and C ′ is switching equivalent to C, so the
graph corresponding to the vectors in B ∪ C is switching equivalent to the
graph corresponding to the vectors in B ∪ C ′. Thus the regular two-graphs
corresponding to the sets of vectors B∪C and B∪C ′ are isomorphic. Hence
we need only search the

(
d
m

)
vectors in Y1 to find the required (n−d)-subset

C of Y . This is still quite a large search space. The next lemma gives us
more information about the relationship between vectors in C = Ω \B.

4.3 Lemma. Let B = {x1, x2, . . . , xd} be a positive basis for a set Ω of
unit vectors spanning a set of equiangular lines in Rd with mutual angle
arccos(α), and let G be the Gram matrix for B. Let y and z be distinct
vectors in Ω \ B. Suppose that fB(y) and fB(z) both contain m negative
entries. If 〈y, z〉 = α, then fB(y) and fB(z) differ in sign in

s1 =
1
2

[
d−

(
(1− α)(1 + (d− 1)α) + (d− 2m)2α2

α(1 + (d− 1)α)

)]
(4.4)
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positions, and if 〈y, z〉 = −α, then fB(y) and fB(z) differ in sign in

s2 =
1
2

[
d +

(
(1− α)(1 + (d− 1)α)− (d− 2m)2α2

α(1 + (d− 1)α)

)]
(4.5)

positions.

Proof: Since y, z ∈ Ω \ B, 〈y, z〉 = ±α. If L is the matrix whose columns
are the vectors in B, then

±α = yT z = [α(fB(y))T L−1][αL−T fB(z)]

= α2(fB(y))T (LT L)−1fB(z)

= α2(fB(y))T G−1fB(z).

Now substituting the formula for G−1 given in Lemma 4.1 into the above
equation gives

±α = α2(fB(y))T

[
1

1− α
I +

α

(α− 1)(1 + (d− 1)α)
J

]
fB(z)

=
α2

1− α
(fB(y))T fB(z) +

α3

(α− 1)(1 + (d− 1)α)
(1T fB(y))(1T fB(z)),

in which 1 is the vector of Rd with every entry equal to 1. Let s′ be the
number of positions in which fB(y) and fB(z) differ in sign. Then

±α =
α2

1− α
(d− 2s′) +

α3

(α− 1)(1 + (d− 1)α)
(d− 2m)2. (4.6)

If 〈y, z〉 = α, then solving for s′ in Equation 4.6, we obtain

s′ =
1
2

[
d−

(
(1− α)(1 + (d− 1)α) + (d− 2m)2α2

α(1 + (d− 1)α)

)]
= s1.

If 〈y, z〉 = −α, then

s′ =
1
2

[
d +

(
(1− α)(1 + (d− 1)α)− (d− 2m)2α2

α(1 + (d− 1)α)

)]
= s2.
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In Section 3.3 it will be shown that if m and −1/α are integers, then s1 and
s2 are even integers. We will also see that there is only one parameter set
for a regular two-graph which yields an integral value for m where s1 and
s2 are not both integers.

The obvious relationship between ±1-vectors in Rd and subsets of

{1, 2, . . . d}
suggests that Lemmas 4.2 and 4.3 can be restated in the language of in-
cidence structures. We obtain the following characterization of a regular
two-graphs with a clique of specified order.

4.4 Theorem. Let 0 < α < 1 and let d be an integer such that d ≥ 2. Let
n = d−dα2

1−dα2 , let

m =
1
2

(
d−

√
d(d− 1) + (2d− 1)α−1 − (d− 2)α−2 − α−3

)
,

let

s1 =
1
2

[
d−

(
(1− α)(1 + (d− 1)α) + (d− 2m)2α2

α(1 + (d− 1)α)

)]
,

and let

s2 =
1
2

[
d +

(
(1− α)(1 + (d− 1)α)− (d− 2m)2α2

α(1 + (d− 1)α)

)]
.

Let `1 = m− s1/2 and `2 = m− s2/2. There exists a regular two-graph on
n vertices with a clique of order d with least eigenvalue −1/α if and only if
there exists an incidence structure on d points with n − d blocks of size m,
such that any two distinct blocks β and δ satisfy |β ∩ δ| = `1 or |β ∩ δ| = `2.

Proof: Suppose that there exists a regular two-graph with the stated prop-
erties. Then by Theorem 2.8, there exists a set of n equiangular lines in
Rd with mutual angle arccos(α). Since there is a clique of order d in this
two-graph, there exists a set Ω of unit vectors spanning these lines which
contains a positive basis B.

Let G be the Gram matrix for B, and let L be the matrix whose columns
are the vectors in B. There are n− d vectors in Ω \B, and by Lemma 4.2,
for each vector y in this set,

fB(y) = α−1LT y (4.7)

is a ±1-vector in Rd which contains exactly m or d − m entries equal to
−1. Switching on some of the vectors in Ω \B if necessary, we can assume,



4.2. THE CONSTRUCTION 51

without loss of generality, that for every vector y in Ω\B, fB(y) has exactly
m negative entries.

For each vector y in Ω \ B, let βy denote the m-subset of {1, 2, . . . , d}
which contains i if and only if the i-th position of fB(y) is equal to −1. Let

Φ := {βy : y ∈ Ω \B}.
If y and z are distinct vectors in Ω\B, then by Lemma 4.3, fB(y) and fB(z)
differ in sign in s1 or s2 position. This implies that |βy∩βz| = m−s1/2 = `1

or |βy ∩ βz| = m − s2/2 = `2. Hence {1, 2, . . . , d} is the point set and Φ is
the block set of an incidence structure with the required properties.

Conversely, suppose that there exists an incidence structure on point
set {1, 2, . . . , d} and block set Φ which satisfies the stated properties. Let
B = {x1, x2, . . . , xd} be a set of unit vectors in Rd such that 〈xi, xj〉 = α,
for i 6= j. Note that it is possible to find such a set B. Since B is a positive
basis of itself, by Lemma 2.1, B is a basis of Rd. Let L be the matrix whose
columns are the vectors in B, and let G = LT L, the Gram matrix for the
vectors in B.

For each block β in Φ, let xβ denote the ±1-vector in Rd with i-th entry
equal to −1 if and only if i ∈ β, and let

yβ := f−1(xβ) = αL−T (xβ).

Now for each β in Φ, xβ has exactly m negative entries. Since m is a solution
to Equation 4.3 in the proof of Lemma 4.2, we must have that 〈yβ, yβ〉 = 1,
for all β in Φ.

Now suppose that β and δ are distinct blocks of Φ. If |β ∩ δ| = `1, then
xβ and xδ differ in sign in 2(m − `1) = 2(m − (m − s1/2)) = s1 positions.
Similarly, if |β ∩ δ| = `2, then xβ and xδ differ in sign in s2 positions. Since
s1 and s2 satisfy Equation 4.6 of Lemma 4.3, we have that 〈yβ, yδ〉 = α
whenever |β ∩ δ| = `1, and 〈yβ, yδ〉 = −α whenever |β ∩ δ| = `2. Thus the
set

C := {yβ : β ∈ Φ}
is a set of unit vectors spanning a set of equiangular lines in Rd, with mutual
angle arccos(α).

Finally, we show that any vector in C is in good position with respect
to B. Since B is a basis of Rd, each vector yβ in C can be written as a
linear combination of vectors in B. Hence there exist unique real scalars
a1, a2, . . . , ad such that

yβ =
d∑

j=1

ajxj .
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Thus

〈xi, yβ〉 = xT
i

d∑

j=1

ajxj =
d∑

j=1

aj〈xi, xj〉.

Since the ij-th entry of G is 〈xi, xj〉, we have

[〈x1, yβ〉, 〈x2, yβ〉, . . . , 〈xd, yβ〉]T = G[a1, a2, . . . , ad]T . (4.8)

To show that yβ is in good position with respect to B, we need only show
that G[a1, a2, . . . , ad]T is a ±α vector. Now

L[a1, a2, . . . , ad]T = yβ = αL−T xβ,

and thus

αxβ = LT L[a1, a2, . . . , ad]T

= G[a1, a2, . . . , ad]T .

Thus G[a1, a2, . . . , ad]T is a ±α-vector, as required.
Hence B ∪C is a set of n unit vectors which span a set of n equiangular

lines in Rd with mutual angle arccos(α), which contains the positive basis
B. Now Theorem 2.8 implies that there exists a regular two-graph with the
stated parameters, and the basis B corresponds to a clique of order d in this
graph.

The proof of Theorem 4.4 gives a method for constructing a regular two-
graph which contains a clique of order d with the given parameters from an
incidence structure with the stated properties. Suppose we are given such
an incidence structure with point set {1, 2, . . . , d} and block set Φ. Start
with an ordered set of d vertices, say V = {v1, v2, . . . , vd}. Form the graph
X with vertex set V (X) := V ∪ Φ and edge set

E(X) := {viβ : β ∈ Φ, i 6∈ β} ∪ {βδ : β, δ ∈ Φ, |β ∩ δ| = `1}.

The vertices of V correspond to the vectors of a positive basis

B = {x1, x2, . . . , xd},

and they form a clique in this graph. The vertices β of Φ correspond to
the vectors yβ in C = Ω \ B, where Ω is a set of unit vectors spanning
a set of equiangular lines with mutual angle arccos(α), which meets the
relative bound, and which contains the positive basis B. Now for any i in
{1, 2, . . . , d} and any β in Φ, 〈xi, yβ〉 = α if and only if i 6∈ β. Also, if β and
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δ are distinct elements of Φ, then |β ∩ δ| = `1 if and only if 〈yβ, yδ〉 = α.
Hence two vertices are adjacent in X if and only if their associated unit
vectors have inner product equal to α. Thus X is the graph defined by the
Seidel matrix S(X) corresponding to the Gram matrix G = I + αS(X) of
the vectors in Ω. Since Ω meets the relative bound, Theorem 2.8 guarantees
that the switching graph of X is a regular two-graph with least eigenvalue
−1/α of multiplicity n−d, and by construction, it contains a clique of order
d. Its complement is a regular two-graph with an independent set of order
d.

4.3 Feasible Parameter Sets

Before applying the construction of Section 4.2, it would be useful to know
which of the feasible parameter sets for regular two-graphs listed in Ta-
bles 3.1 and 3.2 could describe graphs which contain a clique of the required
size. Given an integer d ≥ 2 and a real number α such that 0 < α < 1, if
the value for m in Lemma 4.2 is not a positive integer, there are no unit
vectors outside of a positive basis B in Rd which are in good position with
respect to B. Hence there does not exist a non-trivial regular two-graph
which contains a clique of order d having least eigenvalue τ = −1/α with
multiplicity mτ = n − d, where n = d−dα2

1−dα2 . Thus, any feasible parameter
set (n, a1, c2; θ, mθ, τ,mτ ) for a regular two-graph in Tables 3.1 and 3.2 for
which α = −1/τ and d = n −mτ yield an non-integral value for m can be
eliminated as a candidate for this construction technique. Lemma 4.5 shows
that we can eliminate all of the parameter sets with mθ = mτ , except for
the case when n = 6.

4.5 Lemma. Suppose that Γ is a nontrivial regular two-graph with param-
eters

(n, a1, c2; θ, mθ, τ,mτ ).

Let α = −1/τ , let d = n−mτ , and let

m =
1
2

(
d−

√
d(d− 1) + (2d− 1)α−1 − (d− 2)α−2 − α−3

)
.

If n > 6 and mθ = mτ , then m is not an integer, and consequently Γ does
not contain a clique of order d.

Proof: If mθ = mτ = n/2, then the equations of Lemma 3.13 show that
θ = −τ , and hence by Lemma 3.15, τ = −√n− 1. Thus α = 1/

√
n− 1, and
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d = n/2. Substituting these values into the formula for m yields

m =
1
4

(
n−

√
−n2 + 8n− 8

)
.

Thus m is not an integer unless

−n2 + 8n− 8 ≥ 0,

which implies that
4− 2

√
2 ≤ n ≤ 4 + 2

√
2.

Since n must be even, if n > 6, m is not an integer.

Lemma 4.5 shows that we can eliminate all of the parameter sets in Ta-
bles 3.1 and 3.2 with mτ = mθ as candidates for the construction of Theo-
rem 4.4. In particular, this eliminates all of the parameter sets in Table 3.2
except for the one on 6 vertices.

The next result verifies that if m is an integer, the intersection sizes `1

and `2 of the blocks of the incidence structure of Theorem 4.4 are integers.

4.6 Lemma. Let Γ be a regular two-graph with parameter set

(n, a1, c2; θ, mθ, τ,mτ )

such that n > 6. Let α = −1/τ and let d = n − mτ . Let m, s1, s2 be
defined as in Lemmas 4.2 and 4.3. If m is an integer, then s1 and s2 are
even integers.

Proof: If m is an integer, then by Lemma 4.5, mθ 6= mτ , so by Lemma 3.15,
the eigenvalues θ and τ are integers. Equation 4.3 of Lemma 4.2 shows that

(d− 2m)2 =
(1− α− dα2)(1 + (d− 1)α)

−α3
.

Substituting α = −1/τ into the above equation gives

(d− 2m)2 = (τ2 + τ − d)(τ − d + 1). (4.9)

By Lemma 4.3,

s1 =
1
2

[
d−

(
1− α

α

)
− (d− 2m)2α

(1 + (d− 1)α)

]
.

Substituting α = −1/τ and the formula for (d− 2m)2 given in Equation 4.9
into this equation yields

s1 =
1
2
(τ + 1)2,
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Parameter Set
(n, a1, c2; θ, mθ, τ, mτ ) d α m s1 s2 `1 `2

(6, 2, 2;
√

5, 3,−√5, 3) 3 1/
√

5 1 – – – –
(16, 8, 6; 5, 6,−3, 10) 6 1/3 3 2 4 2 1

(28, 16, 10; 9, 7,−3, 21) 7 1/3 2 2 4 1 0
(96, 54, 40; 19, 20,−5, 76) 20 1/5 10 8 12 6 4

(126, 72, 52; 25, 21,−5, 105) 21 1/5 8 8 12 4 2
(276, 162, 112; 55, 23,−5, 253) 23 1/5 7 8 12 3 1
(288, 160, 126; 41, 42,−7, 246) 42 1/7 21 18 24 12 9

Table 4.1: Feasible Parameter Sets for Regular Two-Graphs With Large
Cliques

which is an even integer since τ is odd. Similarly, substituting α = −1/τ and
the above expression for (d−2m)2 into the the equation for s2 in Lemma 4.3
yields

s2 =
1
2
(τ − 1)(τ + 1),

which implies that s2 is also an even integer.

Each of the feasible parameter sets (n, a1, c2; θ, mθ, τ,mτ ) for regular two-
graphs with integer eigenvalues in Table 3.1 was tested to check whether the
values d = n−mτ and α = −1/τ yield an integral value for m in the formula
of Lemma 4.2. For n ≤ 300, the parameter sets for regular two-graphs on
n vertices for which m is an integer are provided in Table 4.1, along with
their corresponding values for d, α, m, s1, s2, `1, and `2. These are all of
the feasible parameter sets for our construction, for n ≤ 300.

In the next two examples, we construct regular two-graphs with cliques
of order d for the parameter sets with n = 6 and n = 16. In Section 4.4,
we will use quasi-symmetric designs to construct regular two-graphs for the
parameter sets with n = 28 and n = 276. It will be shown that for the
parameter set with n = 126, the associated incidence structure of Theo-
rem 4.4 is not a 2-design. It is still not know whether regular two-graphs
with cliques of order d exist for the parameter sets with n = 96, 126, 288.

Example. In Section 3.3 we saw that the switching graph Γ of C5 ∪K1 is
a regular two graph with nontrivial eigenvalues

√
5 and −√5, with equal

multiplicity 3. Switching on the isolated vertex of C5 ∪K1 yields a graph Y
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which contains a clique of order 3. Since Sw(Y ) is isomorphic to

Γ = Sw(X ∪K1),

Γ contains two disjoint cliques of order 3. One can verify that Γ is the unique
regular two-graph with parameters (6, 2, 2;

√
5, 3,−√5, 3).

Example. To construct a regular two-graph with parameter set

(16, 8, 6; 5, 6,−3, 10)

containing a clique of order d = 6 using Theorem 4.4, we require an incidence
structure on 6 points, with n − d = 10 blocks of size m = 3, such that any
two blocks meet in `1 = 2 or `2 = 1 points. The incidence structure with
block set

{123, 124, 125, 126, 134, 135, 136, 145, 146, 156}
satisfies these conditions.

In the next section we look at a class of designs satisfying the intersection
properties of Theorem 4.4.

4.4 Quasi-Symmetric Designs

Quasi-symmetric designs provide a class of examples of incidence structures
which satisfy the properties of Theorem 4.4.

A t-(v, k, λt) design is a set P of v points, together with a collection Φ
of k-subsets of P , called blocks, such that every t-subset of points in P lies
in exactly λt blocks. A 2-design is quasi-symmetric if there are constants
`1 and `2, with `1 > `2, such that any two distinct blocks of D have exactly
`1 or `2 points in common.

If D is a t-(v, k, λt) design, and S is an s-subset of points with s < t, we
can count the number of blocks λs of D containing S. We count the pairs
(T, B), where T is a t-set containing S and B is a block containing T , in two
ways. First, S lies in

(
v−s
t−s

)
t-subsets T , each of which lies in λt blocks. Also,

for each block containing S, there are
(
k−s
t−s

)
possible choices for T . Hence

λs

(
k − s

t− s

)
= λt

(
v − s

t− s

)
. (4.10)

Since the number of blocks does not depend on the choice of S, D is also a
s-(v, k, λs) design, for each s < t. Hence if such a t-design exists, then the
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values of λs must be integers for all s < t. The parameter λ0 is the total
number of blocks in the design, and is usually denoted by b. Setting s = 0
in Equation 4.10, we have

b

(
k

t

)
= λt

(
v

t

)
. (4.11)

Thus for a 2-design,

b =
λ2(v2 − v)

k2 − k
.

The number of blocks containing each point is λ1. It is called the replica-
tion number of the design, and is usually denoted by r. Setting t = 1 in
Equation 4.11 yields

bk = vr.

Hence in a 2-design,

r =
bk

v
=

λ2(v − 1)
k − 1

.

Example. Every 2-(v, k, 1) design is quasi-symmetric with block intersec-
tion sizes (`1, `2) = (1, 0). To construct a regular two-graph on the parame-
ter set (28, 16, 10; 9, 7,−3, 21), with a clique of order 7, by Theorem 4.4 we
require an incidence structure on d = 7 points with n − d = 21 blocks of
size m = 2, in which every two blocks intersect in `1 = 1 or `2 = 0 points.
The set of 21 subsets of size 2 of any set of 7 points forms a simple 2-(7,2,1)
design with the desired properties.

Example. The Witt Design on 23 Points:
The Witt design is a 4-(23, 7, 1) design, and it is one of the most interesting
combinatorial structures. We describe a construction for this design given
in [10] and show that it is quasi-symmetric with intersection sizes (`1, `2) =
(3, 1).

Over GF (2), the polynomial x23 − 1 factors as

(x− 1)g(x)h(x),

in which
g(x) = x11 + x9 + x7 + x6 + x5 + x + 1

and
h(x) = x11g(x−1) = x11 + x10 + x6 + x5 + x4 + x2.

Both h(x) and g(x) are irreducible polynomial of degree 11. Let R denote
the ring of polynomials over GF (2), modulo x23 − 1, and let C be the ideal
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of this ring generated by g(x). Then C is the set of all polynomials in this
ring divisible by g(x). The powers of g(x) modulo x23 − 1 form the ring
C. Each element in R can be represented by a polynomial over GF (2) with
degree at most 22, so we can represent each element f of R by a binary
vector of length 23, with the i-th coordinate equal to the coefficient of xi in
f (for 0 ≤ i ≤ 22). The ideal C of R contains 2048 polynomials, and hence
can be represented by a set C ′ of 2048 binary vectors of length 23 (these
2048 vectors form the binary Golay code). Exactly 253 of these vectors have
precisely 7 nonzero entries. The set of nonzero positions of a binary vector
is called its support, and the supports of these 253 vectors form a 4-(23, 7, 1)
design, known as the Witt design on 23 points. It is known that this is the
unique design with these parameters. This design has b = 253 blocks, and
each point occurs in r = 77 blocks. Every pair of points occurs in exactly
λ2 = 21 blocks, and every 3-set of points lies in λ3 = 5 blocks, so this is also
a 2-(23, 7, 21) design and a 3-(23, 7, 5) design.

We now show that the Witt design is quasi-symmetric. Let B be a
block of this design. Relabeling the points if necessary, we can assume that
B = {1, 2, 3, 4, 5, 6, 7}. For each i and j in {0, 1, 2, 3, 4, 5, 6, 7} with i+j ≤ 7,
let λi,j be the number of blocks of the Witt design that contain the first i−j
points of B, but none of the next j points. Then since λi,0 = λi, for i ≤ 3,
we have

λ0,0 = 253, λ1,0 = 77, λ2,0 = 21, λ3,0 = 5.

Also λi,0 = 1 if 4 ≤ i ≤ 7. One can verify that if i, j ≥ 1, then

λi,j = λi−1,j−1 − λi,j−1.

Thus the lower triangular portion of the 8× 8 matrix M with Mij = λi,j is
given by

M =




253
77 176
21 56 120
5 16 40 80
1 4 12 28 52
1 0 4 8 20 32
1 0 0 4 4 16 16
1 0 0 0 4 0 16 0




.

The last row of M implies that exactly 1 block contains every point of B, 4
blocks contain the first 3 points of B and none of the other 4 points, and 16
blocks contain the first point of B and no other point of B. For this design,
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the values λi,j are independent of the choice of B. Thus any two blocks of
the Witt design meet in either 1 or 3 points.

Example. The Unique Regular Two-Graph on 276 Vertices:
To construct a regular two-graph with parameters

(276, 162, 112; 55, 23,−5, 253)

with a clique of order 23, we require an incidence structure on d = 23 points
with n − d = 253 blocks of size m = 7, such that any two blocks meet in
`1 = 3 or `2 = 1 points. The Witt design has the desired properties. In [12],
Goethals and Seidel proved that this is the unique regular two-graph (up to
complementing) on 276 vertices. Their proof reduces to the uniqueness of
the ternary Golay code. This construction shows that this regular two-graph
contains a clique of order 23.

In [3], Calderbank derived the following necessary conditions for the
existence of a 2-(v, k, λ) design in which the block intersection sizes are all
congruent modulo 2.

4.7 Theorem. Let p be a prime. Let D be a 2-(v, k, λ) design with block
intersection sizes `1, `2, . . . , `t, such that `1 ≡ `2 ≡ . . . ≡ `t ≡ ` mod 2. Then
one of the following conditions hold:

(a) r ≡ λ mod 4,

(b) ` ≡ 0 mod 2, k ≡ 0 mod 4, and v ≡ ±1 mod 8,

(c) ` ≡ 1 mod 2, k ≡ v mod 4, and v ≡ ±1 mod 8.

Example. To construct a regular two-graph with parameters

(126, 72, 52; 25, 21,−5, 105)

which contains a clique of order 21, by Theorem 4.4 we require an incidence
structure on d = 21 points, with n − d = 105 blocks of size m = 8, such
that any two blocks meet in exactly `1 = 4 or `2 = 2 points. If there were
a quasi-symmetric design with these properties, it would be a 2-(21, 8, 14)
design with intersection numbers congruent to 0 modulo 2. Theorem 4.7
shows that a quasi-symmetric design with these parameters does not exist.
Hence, we cannot use a quasi-symmetric design to construct such a regular
two-graph.



60 CHAPTER 4. CONSTRUCTING REGULAR TWO-GRAPHS

Of course, the last example does not imply that there does not exist a
regular two-graph with parameters (126, 72, 52; 25, 21,−5, 105) containing a
21-clique. The incidence structure required by Theorem 4.4 need not be
a 2-design, as the regular two-graph constructed on 16 vertices in the last
section shows.

Example. If there exists a 2-design satisfying the properties of the incidence
structure required by Theorem 4.4 for the parameter set

(96, 54, 40; 19, 20,−5, 76),

it would be a 2-(20,10,18) design with intersection numbers (`1, `2) = (6,4).
The parameters of this design satisfy the necessary conditions of Theo-
rem 4.7, but it is still not known if such a design exists. Using a greedy
algorithm to search the set of subsets of size 10 of the set {1, 2, . . . , 20}, we
can find 70 blocks, every two of which meet 4 or 6 points. By Theorem 4.4
we need 76 such blocks to construct the desired regular two-graph. With
these 70 blocks, using the method of Theorem 4.4 we can find a set of 90
vectors in R20 which span a set of 90 equiangular lines, with mutual angle
arccos(1/5), which contains a positive basis. (The largest set of equiangular
lines in R20 known to exist has size 90. Taylor found such a set in [21].)
This corresponds to a graph on 90 vertices which has least eigenvalue −5
with multiplicity 76, which contains a clique of order 20.

Example. If there exists a 2-design satisfying the properties of the incidence
structure required by Theorem 4.4 for the parameter set

(288, 160, 126; 41, 42,−7, 246),

it would be a 2-(42,21,60) design with intersection numbers (`1, `2) = (12, 9).
It is not known if such a design exists.

Neumaier developed a classification of quasi-symmetric 2-(v, k, λ) de-
signs, in which he distinguishes four classes of designs and lists the parame-
ter sets of the 23 exceptional designs with v ≤ 40 that do not belong to any
of the four classes. Calderbank updated this list in [3] and [4] to include
exceptional design parameters with v ≤ 70. It is interesting to note that all
of the parameter sets for quasi-symmetric designs which satisfy the require-
ments of Theorem 4.4 for some parameter set in Table 4.1 (with n > 28) are
on Neumaier’s exceptional list of parameters.

Theorem 4.4 raises an interesting question: given a regular two-graph
with a clique of order d, when is the incidence structure of Theorem 4.4 a 2-
design? The only examples of these regular two-graphs which we were able
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to construct from 2-designs correspond to sets of equiangular lines which
meet the absolute bound of Lemma 2.2. Is this a necessary condition?
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