Office: 6L05 Lockhart Hall Phone: (204) 786-9346 Fax: (204) 774-4134 E-mail: s.gosselin@uwinnipeg.ca |
Shonda Gosselin
Dept. of Mathematics and Statistics R3B 2E9 Assistant
Professor, Adjunct Professor, |
Fall 2013:
MATH-3401 Graph Theory
MATH-1401 Discrete Math |
Winter 2014:
MATH-2106
Intermediate Calculus II
MATH-1102
Basic Calculus |
My research is in the area of algebraic graph theory. I am interested in the action of groups on graphs and hypergraphs. Recently I have studied cyclic partitions of complete hypergraphs, which can be viewed as generalized self-complementary graphs. I am also interested in the problem of determining under what conditions a Cayley digraph has a Hamiltonian cycle. This summer I am working with an undergraduate research student on finding the metric and partition dimension of hypergraphs.
Here are the links to some conferences I have attended or will attend.
A. Borchert and S. Gosselin, The metric dimension of circulant graphs and Cayley hypergraphs. Submitted 2013.
S. Gosselin, A. Szymański and A.P. Wojda, Cyclic partitions of complete nonuniform hypergraphs and complete multipartite hypergraphs. Discrete Mathematics & Theoretical Computer Science, Volume 15, no. 2 (2013), pp. 215-222.
G. Andruchuk and
G. Andruchuk, S. Gosselin and Y. Zheng, Hamiltonian Cayley digraphs on direct products of dihedral groups. Open Journal of Discrete Mathematics, Volume 2 (2012), pp. 88-92.
S. Gosselin. Self-complementary non-uniform hypergraphs. Graphs and Combinatorics, Volume 28 (2012), pp. 615-635.
S. Gosselin. Constructing regular
self-complementary uniform hypergraphs.
Journal of Combinatorial Designs,
Volume 19 (2011), pp. 439-454.
S. Gosselin. Vertex-transitive
q-complementary uniform hypergraphs. Electronic Journal of Combinatorics,
Volume 18 (2011), no. 1, Research Paper 100, 19 pp.
S. Gosselin. Cyclically t-complementary uniform hypergraphs. European Journal of Combinatorics, Volume 31 (2010), pp. 1629-1636.
S. Gosselin. Generating
self-complementary uniform hypergraphs. Discrete Mathematics, Volume 310 (2010),
pp. 1366-1372.
S. Gosselin. Vertex-transitive
self-complementary uniform hypergraphs of prime order. Discrete
Mathematics, Volume 310 (2010), pp. 671-680.
M. Fehr, S. Gosselin and
O. Oellermann. The partition
dimension of Cayley digraphs. Aequationes
Mathematicae, Volume
71 (2006), pp.
1-18.
M. Fehr, S. Gosselin and O. Oellermann.
The metric
dimension of Cayley digraphs. Discrete Mathematics, Volume 306 (2006), pp. 31-41.
S. Gosselin. Self-complementary
hypergraphs. Ph.D. Thesis,
S. Gosselin. Regular
two-graphs and equiangular lines.
Master’s Thesis,
My CV
Professional Societies
I am a member of the following mathematical
societies:
The Society for
Industrial and Applied Mathematics (
The
SIAM Activity Group on Discrete Mathematics
The Canadian
Mathematical Society
The American
Mathematical Society
Last update: October 23, 2013.