Synchronizing Automata and Černý’s Conjecture

Narad Rampersad

Department of Mathematics
University of Liège
A finite automaton
Here a finite automaton is a directed multigraph where:

- every vertex has constant out-degree k, and
- the outgoing arcs of each vertex are labeled by distinct elements of a fixed k-element set.
Terminology

- We call the vertices **states** and denote the set of states by Q.
- We call the arcs **transitions**.
- Arcs are labeled by **letters**.
- A sequence of letters is called a **word**.
The transition function \(\delta(p, a) = q \) denotes a transition from \(p \) to \(q \) labeled by \(a \).

If \(w = w_1w_2 \cdots w_n \) is a word then \(\delta(q, w) \) is the state reached by starting at \(q \) and following the sequence of arcs labeled \(w_1, w_2, \ldots, w_n \).

If \(A \subseteq Q \) then

\[
\delta(A, w) = \bigcup_{q \in A} \delta(q, w).
\]
Synchronizing automata

- A word w such that $\delta(q, w) = \delta(q', w)$ for all $q, q' \in Q$ is a reset word.
- An automaton with a reset word is synchronizing.
- Equivalently, there exists a state p and a word w such that $\delta(Q, w) = \{p\}$.
- Given an automaton, can we decide if it is synchronizing?
- If so, can we find the shortest reset word?
A synchronizing automaton

Reset word: *abbbabbbba*.
Applications

- Moore’s Gedanken-experiments (1950’s):
 - Imagine a satellite orbiting the moon.
 - Its behaviour while on the dark side of the moon cannot be observed.
 - When control is reestablished, we wish to reset the system to a particular configuration.
Applications

- Robotics (Natarajan 1980’s):
 - Imagine parts arriving on an assembly line with arbitrary orientations.
 - The parts must be manipulated into a fixed orientation before proceeding with assembly.
Černý’s Conjecture

Černý’s Conjecture (1964)

The shortest reset word of any synchronizing automaton with n states has length at most $(n - 1)^2$.
Černý’s construction

Reset word: \((ab^{n-1})^{n-2}a\) (length \((n - 1)^2\)).
Partial results

- E.g., Kari (2003) verified the conjecture for synchronizing automata whose underlying digraphs are Eulerian.
- Conjecture verified for several other classes of synchronizing automata.
- Steinberg (preprint) unified and simplified many of these proofs.
Best known upper bound

- M is a synchronizing automaton:

- There are sets $Q = P_1, P_2, \ldots, P_t$, and words $w_1, w_2, \ldots, w_{t-1}$, such that
 - $\delta(P_i, w_i) = P_{i+1}$, for $i = 1, \ldots, t - 1$;
 - $|P_i| > |P_{i+1}|$, for $i = 1, \ldots, t - 1$;
 - $|P_t| = 1$.

- $w = w_1w_2\cdots w_{t-1}$ is a reset word for M.
An example

Reset word: $a \ b b a \ b b a$.

Diagram:

- States: 1, 2, 3, 4
- Edges: 1→2 (a,b), 2→4 (b), 4→3 (b), 3→2 (a), 2→1 (a,b)
An example

Reset word: \textit{a bbba bbba}.
An example

Reset word: \textit{a bbba bbba}.
An example

Reset word: \(a \ bbba \ bbba\).
An example

Reset word: $a b b b a b b b a$.

![Diagram](image-url)
An example

Reset word: $a b b b a b b b a$.

\begin{center}
\begin{tikzpicture}
\node[shape=circle,draw=black,fill=white] (T1) at (1,1) {1};
\node[shape=circle,draw=black,fill=white] (T2) at (3,1) {2};
\node[shape=circle,draw=black,fill=white] (T3) at (3,-1) {3};
\node[shape=circle,draw=black,fill=white] (T4) at (1,-1) {4};
\path[->]
(T1) edge node {a,b} (T2);
(T2) edge node {b} (T3);
(T3) edge node {b} (T4);
(T4) edge node {a} (T1);
(1.5,-1) edge [out=45,in=135,loop] node {a} (1.5,-1);
(3,0) edge [out=-45,in=-135,loop] node {a} (3,0);
\end{tikzpicture}
\end{center}
An example

Reset word: \(a \text{ bbba bbba}. \)
An example

Reset word: \(a \ bbba \ bbba. \)
An example

Reset word: $a \textbf{bbba} b\textbf{bbba}$.
An example

Reset word: $a \ b b \ b a \ b b a$.
An example

Reset word: $a \ b b b a \ b b b a$.
The greedy algorithm

Algorithm to find reset word w

Set $P_1 = Q$ and $t = 1$.

While $|P_t| > 1$:

Find a smallest word w_t such that $|\delta(P_t, w_t)| < |P_t|$.

Set $P_{t+1} = \delta(P_t, w_t)$ and increment t.

Return $w = w_1 w_2 \cdots w_{t-1}$.
Length of the reset word found

- What is the maximum length of w found by the greedy algorithm?
- In the worst case, $|P_i| - |P_{i+1}| = 1$, so that $t = n$.
- Consider a generic step k: i.e., P_k and w_k such that $|\delta(P_k, w_k)| < |P_k|$.
- What is the longest that w_k can be?
Let \(w_k = a_1 a_2 \cdots a_{m+1} \) (the \(a \)'s letters).

There are sets \(P_k = A_1, A_2, \ldots, A_{m+2} \) such that

- \(\delta(A_i, a_1) = A_{i+1} \) for \(i = 1, \ldots, m + 1 \);
- \(|A_i| = |A_{i+1}| \) for \(i = 1, \ldots, m \);
- \(|A_{m+1}| > |A_{m+2}| \).
Length of the reset word found

- For $i = 1, \ldots, m + 1$,

$$|\delta(A_i, a_i \cdots a_{m+1})| < |A_i|.$$

- Thus there exists $q_i, q'_i \in A_i$ such that

$$\delta(q_i, a_i \cdots a_{m+1}) = \delta(q'_i, a_i \cdots a_{m+1}).$$

- To each A_i, associate the set $B_i = \{q_i, q'_i\}$.

Length of the reset word found

- Note that \(B_i \subseteq A_i \).
- Furthermore, for \(i < j \), \(B_j \nsubseteq A_i \).
- Otherwise, we would have a shorter word
 \[
 w_k' = a_1 \cdots a_{i-1} a_j \cdots a_{m+1}
 \]
such that \(|\delta(P_k, w_k')| < |P_k| \).
Let $\overline{A_i}$ denote the complement of A_i, i.e., the set $Q \setminus A_i$.

We thus have

- $B_i \cap \overline{A_i} = \emptyset$ for $i = 1, \ldots, m$;
- $B_j \cap \overline{A_i} \neq \emptyset$ for $i < j$.

What is the largest that m can be subject to these constraints?
Theorem (Frankl 1982)

Let A_1, \ldots, A_m be sets of size r and let B_1, \ldots, B_m be sets of size s such that

(a) $A_i \cap B_i = \emptyset$ for $i = 1, \ldots, m$;

(b) $A_i \cap B_j \neq \emptyset$ if $i < j$.

Then $m \leq \binom{r+s}{s}$.
A bound on the length of the reset word

Let $|Q| = n$. Then $|A_i| = n - k$ (since $|A_i| = k$) and $|B_i| = 2$ for $i = 1, \ldots, m$.

By Frankl’s result, $m \leq \binom{n-k+2}{2}$.

Total length of the reset word at most

$$\sum_{k=2}^{n} \binom{n-k+2}{2} = \frac{n^3 - n}{6}.$$
Running time of the algorithm

- Originally conjectured by Fischler and Tannenbaum (1970) and (independently) by Pin (1981).
- After hearing Pin’s 1981 talk, Frankl proved the necessary combinatorial result (independently rediscovered by Klyachko, Rystsov, and Spivak (1987)).
- Eppstein (1990) showed how to implement the greedy algorithm in $O(n^3 + kn^2)$ time.
- Greedy algorithm does not find a shortest reset word.
Finding a reset word of a given length

SYNCWORD

Given an automaton \(A \) and a positive integer \(k \), does \(A \) have a reset word of length at most \(k \)?

- Clearly in NP since it suffices to “guess” a reset word of length at most \(\min\{(n^3 - n)/6, k\} \).
- Eppstein showed it is NP-complete.
Finding a shortest reset word

MIN-SYNCRECORD

Given an automaton A and a positive integer k, does A have a shortest reset word of length k?

- Olschewski and Ummels (preprint) showed it is DP-complete.
The class DP

- DP consists of all languages L such that $L = L_1 \setminus L_2$ for some languages L_1, L_2 in NP.
- A DP-complete problem is both NP-hard and coNP-hard.
- The canonical DP-complete problem is:

<table>
<thead>
<tr>
<th>SAT-UNSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given CNF formulae φ and ψ, is φ satisfiable and ψ unsatisfiable?</td>
</tr>
</tbody>
</table>
DP-completeness

- **MIN-SYNCDWORD** clearly in DP, since it is the difference of **SYNCDWORD** and

 \[
 \{(A, k) : k > 0 \text{ and } (A, k - 1) \in \text{ SYNCDWORD}\}.
 \]

- To show DP-hardness, reduce from **SAT-UNSAT**.
Approximating the shortest reset word

Theorem (Berlinkov (preprint))

Unless $P = NP$, there is no polynomial-time algorithm to approximate the minimum length of a reset word for a given automaton within a constant factor.
Synchronizing colouring

Start with a *strongly connected* directed multigraph G where every vertex has constant out-degree k.

Is it possible to assign labels to the arcs so that G becomes synchronizing?

If so, then G has a *synchronizing colouring*.
The road colouring problem

- Can graphs with synchronizing colourings be characterized?

- A graph is **aperiodic** if the gcd of the lengths of all of its cycles is 1.

- It is not hard to show that aperiodicity is a necessary condition.

- Adler and Weiss (1970) conjectured that it is also a sufficient condition.
The resolution of the problem

Theorem (Trahtman 2007)

Let G be a strongly connected directed multigraph where every vertex has constant out-degree k. Then G has a synchronizing coloring if and only if the gcd of the lengths of all of its cycles is 1.
The literature on synchronizing automata is huge. For more information, see:

- Volkov's 2008 survey:

- Jean-Eric Pin's webpage:

 http://www.liafa.jussieu.fr/~jep/Problemes/Cerny.html

- Avraham Trahtman's webpage:

 http://u.cs.biu.ac.il/~trakht/syn.html
The End