Helly Theorems for 3-Steiner and 3-Monophonic Convexity in Graphs

Morten H. Nielsen and Ortrud R. Oellermann*
University of Winnipeg
{m.nielsen, o.oellermann}@uwinnipeg.ca

Abstract

A family \(C \) of sets has the Helly property if any subfamily \(C' \), whose elements are pairwise intersecting, has non-empty intersection. Suppose \(C \) is a non-empty family of subsets of a finite set \(V \). The Helly number \(h(C) \) of \(C \) is the smallest positive integer \(n \) such that every subfamily \(C' \) of \(C \) with \(|C'| \geq n \) and which intersects \(n \)-wise has non-empty intersection.

In this paper we consider the families of convex sets relative to two graph convexities. Suppose \(G \) is a (finite) connected graph and \(U \) a set of vertices of \(G \). Then a connected subgraph with the fewest number of edges containing \(U \) is called a Steiner tree for \(U \), and the collection of all vertices of \(G \) that belong to some Steiner tree for \(U \) is called the Steiner interval for \(U \). A set \(S \) of vertices of \(G \) is \(g_3 \)-convex if it contains the Steiner interval for every 3-subset \(U \) of \(S \). A subtree \(T \) of \(G \) that contains \(U \) is a minimal \(U \)-tree if every vertex of \(T \) that is not in \(U \) is a cut-vertex of the subgraph induced by \(V(T) \). The collection of all vertices that belong to some minimal \(U \)-tree is called the monophonic interval for \(U \) and a set \(S \) of vertices is \(m_3 \)-convex if it contains the monophonic interval of every 3-subset \(U \) of \(S \).

We characterize those (finite) graphs for which the families of convex sets, of cardinality at least 3, with respect to the \(g_3 \)-convexity and \(m_3 \)-convexity have the Helly property. A graph obtained from a complete graph by deleting a matching is called a near-clique. The maximum order of a near-clique in a graph \(G \) is called the near-clique number of \(G \). It is observed that the near-clique number of a graph is a lower bound on the Helly number for both the family of \(g_3 \)- and \(m_3 \)-convex sets. It is shown that the near-clique number of chordal and distance-hereditary graphs equals the Helly number of the \(g_3 \)-convex sets for these graphs and it is shown that there are graphs with near-clique number 3 for which the Helly number of the \(g_3 \)-convex sets is arbitrarily large. For the \(m_3 \)-convex sets it is shown that the near-clique number always equals the Helly number.

Key Words: Helly number, Helly property, Steiner tree, minimal \(U \)-tree, convexity.

AMS subject classification: 05C12, 05C75.

*Supported by an NSERC grant CANADA.