Maximizing the Mean Subtree Order

Lucas Mol
Joint work with Ortrud Oellermann

CanaDAM
June 12, 2017
Ryerson University
Plan

Background

The Gluing Lemma

Optimal Batons

Optimal Caterpillars

Conclusion
<table>
<thead>
<tr>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKGROUND</td>
</tr>
<tr>
<td>THE GLUING LEMMA</td>
</tr>
<tr>
<td>OPTIMAL BATONS</td>
</tr>
<tr>
<td>OPTIMAL CATERPILLARS</td>
</tr>
<tr>
<td>CONCLUSION</td>
</tr>
</tbody>
</table>
Mean Subtree Order

The *mean subtree order* of a tree T, denoted M_T, is the average number of nodes in a subtree of T.

The study of the mean subtree order was initiated by Jamison in 1983. He demonstrated that among all trees of order n, the path has minimum mean subtree order $n + \frac{2}{3}$. The problem of characterizing those trees of order n having maximum mean subtree order remains largely open. Jamison conjectured that any such tree is a *caterpillar*.
Mean Subtree Order

The *mean subtree order* of a tree T, denoted M_T, is the average number of nodes in a subtree of T.

- The study of the mean subtree order was initiated by Jamison in 1983.
The mean subtree order of a tree T, denoted M_T, is the average number of nodes in a subtree of T.

- The study of the mean subtree order was initiated by Jamison in 1983.

- He demonstrated that among all trees of order n, the path has minimum mean subtree order $\frac{n+2}{3}$.
MEAN SUBTREE ORDER

The mean subtree order of a tree T, denoted M_T, is the average number of nodes in a subtree of T.

- The study of the mean subtree order was initiated by Jamison in 1983.
- He demonstrated that among all trees of order n, the path has minimum mean subtree order $\frac{n+2}{3}$.
- The problem of characterizing those trees of order n having maximum mean subtree order remains largely open.
Mean Subtree Order

The *mean subtree order* of a tree T, denoted M_T, is the average number of nodes in a subtree of T.

- The study of the mean subtree order was initiated by Jamison in 1983.
- He demonstrated that among all trees of order n, the path has minimum mean subtree order $\frac{n+2}{3}$.
- The problem of characterizing those trees of order n having maximum mean subtree order remains largely open.
- Jamison conjectured that any such tree is a *caterpillar*.
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called optimal in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 4:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 5:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called optimal in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 6:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 7:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 8:

![Diagram of an optimal tree with order 8]
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 9:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 10:
OPTIMAL TREES

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called optimal in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 11:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called \textit{optimal} in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 12:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 13:
OPTIMAL TREES

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 14:
OPTIMAL TREES

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 15:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called *optimal* in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 16:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called optimal in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 17:
Optimal Trees

Terminology: A tree T with maximum mean subtree order in a given family \mathcal{F} is called optimal in \mathcal{F}.

Question: What do the optimal trees among all trees of order n look like?

Order 18:
The density of a tree T, denoted $\text{den}(T)$, is given by

$$\text{den}(T) = \frac{M_T}{|V(T)|}.$$
The density of a tree T, denoted $\text{den}(T)$, is given by

$$\text{den}(T) = \frac{M_T}{|V(T)|}.$$

Jamison proved the following key results:

- There is a sequence $\{T_k\}$ of trees such that $\text{den}(T_k) \to 1$.

Density

The density of a tree T, denoted $\text{den}(T)$, is given by

$$\text{den}(T) = \frac{M_T}{|V(T)|}.$$

Jamison proved the following key results:

- There is a sequence $\{T_k\}$ of trees such that $\text{den}(T_k) \rightarrow 1$.
- For a tree T of order $n \geq 3$ with ℓ leaves,

$$M_T \leq n - \frac{\ell}{2}.$$
The density of a tree T, denoted $\text{den}(T)$, is given by

$$\text{den}(T) = \frac{M_T}{|V(T)|}.$$

Jamison proved the following key results:

- There is a sequence $\{T_k\}$ of trees such that $\text{den}(T_k) \to 1$.
- For a tree T of order $n \geq 3$ with ℓ leaves,

$$M_T \leq n - \frac{\ell}{2}.$$

- Thus, if $\text{den}(T_k) \to 1$, the proportion of vertices of T_k of degree 2 approaches 1.
<table>
<thead>
<tr>
<th>Plan</th>
<th>Background</th>
<th>The Gluing Lemma</th>
<th>Optimal Batons</th>
<th>Optimal Caterpillars</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Background</td>
<td>The Gluing Lemma</td>
<td>Optimal Batons</td>
<td>Optimal Caterpillars</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Background

The Gluing Lemma

Optimal Batons

Optimal Caterpillars

Conclusion
THE GLUING LEMMA

Among all such trees T, the tree $T_{\lfloor n/2 \rfloor}$ is optimal.

In fact, if $r < s \leq \lfloor n/2 \rfloor$, then $M_{T_r} < M_{T_s}$.

The diagram shows a graph P with vertices u_1, u_2, \ldots, u_n, and a circle labeled Q containing a vertex v. The graph P is connected, and the circle Q is disjoint from the path P. The lemma states that among all possible such graphs T, the graph with $\lfloor n/2 \rfloor$ is the optimal one.
THE GLUING LEMMA

Lemma
Among all such trees T_s, the tree $T_{\lfloor n + \frac{1}{2} \rfloor}$ is optimal.

In fact, if $r < s \leq n + \frac{1}{2}$, then $M^P_{T_r} < M^P_{T_s}$.
THE GLUING LEMMA

Let P be a tree with vertices $u_1, u_2, \ldots, u_{n-1}, u_n$. Let Q be a cycle connecting $u_s = v$ such that u_s is the only vertex in Q that is not in P. If $r < s \leq n + 1/2$, then $M_{T_r} < M_{T_s}$. Call this tree T_s. Among all such trees T_s, the tree $T_{\lfloor n + 1/2 \rfloor}$ is optimal.
THE GLUING LEMMA

Among all such trees T_s, the tree $T_{\lfloor n+1 \rfloor / 2}$ is optimal.

In fact, if $r < s \leq \frac{n+1}{2}$, then $M_T(r) < M_T(s)$.

- Call this tree T_s.

![Diagram](image-url)
THE GLUING LEMMA

Call this tree T_s.

Lemma

Among all such trees T_s, the tree $T_{\left\lfloor \frac{n+1}{2} \right\rfloor}$ is optimal.
The Gluing Lemma

Among all such trees T_s, the tree $T_{\left\lfloor \frac{n+1}{2} \right\rfloor}$ is optimal.

In fact, if $r < s \leq \frac{n+1}{2}$, then $M_{Tr} < M_{Ts}$.

Call this tree T_s.

Lemma
LIMBS OF OPTIMAL TREES

A limb of T is a maximal path in T containing a leaf of T and no vertices of degree greater than 2 in T.
LIMBS OF OPTIMAL TREES

A *limb* of T is a maximal path in T containing a leaf of T and no vertices of degree greater than 2 in T.
LIMBS OF OPTIMAL TREES

A *limb* of T is a maximal path in T containing a leaf of T and no vertices of degree greater than 2 in T.

![Diagram of limbs of an optimal tree]

Theorem

If T is optimal among all trees of order n, then every limb of T has order 1.
LIMBS OF OPTIMAL TREES

A limb of T is a maximal path in T containing a leaf of T and no vertices of degree greater than 2 in T.
LIMBS OF OPTIMAL TREES

A *limb* of T is a maximal path in T containing a leaf of T and no vertices of degree greater than 2 in T.
LIMBS OF OPTIMAL TREES

A *limb* of T is a maximal path in T containing a leaf of T and no vertices of degree greater than 2 in T.

![Diagram showing limbs of an optimal tree]

Theorem

If T is optimal among all trees of order n, then every limb of T has order 1.
The Gluing Lemma allows us to find optimal trees in certain restricted families. Finally, the Gluing Lemma helps us to give a positive answer to a question of Jamison: if T is not a path, then there is a 1-associate T' of T such that $M_T < M_{T'}$.Jamison had proven this with the extra condition that $M_T \leq n + 1/2$.

Other Implications of the Gluing Lemma
OTHER IMPLICATIONS OF THE GLUING LEMMA

- The Gluing Lemma allows us to find optimal trees in certain restricted families.
The Gluing Lemma allows us to find optimal trees in certain restricted families.

Finally, the Gluing Lemma helps us to give a positive answer to a question of Jamison: if T is not a path, then there is a 1-associate T' of T such that $M_{T'} < M_T$.

Jamison had proven this with the extra condition that $M_T \leq \frac{n+1}{2}$.
Other Implications of the Gluing Lemma

- The Gluing Lemma allows us to find optimal trees in certain restricted families.

- Finally, the Gluing Lemma helps us to give a positive answer to a question of Jamison: if T is not a path, then there is a 1-associate T' of T such that $M_{T'} < M_T$.
 - Jamison had proven this with the extra condition that $M_T \leq \frac{n+1}{2}$.
<table>
<thead>
<tr>
<th>PLAN</th>
<th>BACKGROUND</th>
<th>THE GLUING LEMMA</th>
<th>OPTIMAL BATONS</th>
<th>OPTIMAL CATERPILLARS</th>
<th>CONCLUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BACKGROUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE GLUING LEMMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPTIMAL BATONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPTIMAL CATERPILLARS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONCLUSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let $s, t, n \in \mathbb{N}$ such that $s + t \leq n - 2$. Let $B_n(s, t)$ denote the tree of order n obtained from the stars $K_{1,s}$ and $K_{1,t}$ by joining the centre vertices with a path of length $n - s - t - 2$.
Let $s, t, n \in \mathbb{N}$ such that $s + t \leq n - 2$. Let $B_n(s, t)$ denote the tree of order n obtained from the stars $K_{1,s}$ and $K_{1,t}$ by joining the centre vertices with a path of length $n - s - t - 2$.

Questions:
▶ Are the optimal batons balanced?
▶ How many leaves do the optimal batons have?
Batons

Let $s, t, n \in \mathbb{N}$ such that $s + t \leq n - 2$. Let $B_n(s, t)$ denote the tree of order n obtained from the stars $K_{1,s}$ and $K_{1,t}$ by joining the centre vertices with a path of length $n - s - t - 2$.

Questions:
Batons

Let \(s, t, n \in \mathbb{N} \) such that \(s + t \leq n - 2 \). Let \(B_n(s, t) \) denote the tree of order \(n \) obtained from the stars \(K_{1,s} \) and \(K_{1,t} \) by joining the centre vertices with a path of length \(n - s - t - 2 \).

Questions:
- Are the optimal batons \textit{balanced}?
Batons

Let $s, t, n \in \mathbb{N}$ such that $s + t \leq n - 2$. Let $B_n(s, t)$ denote the tree of order n obtained from the stars $K_{1,s}$ and $K_{1,t}$ by joining the centre vertices with a path of length $n - s - t - 2$.

Questions:
- Are the optimal batons balanced?
- How many leaves do the optimal batons have?
Theorem

Among all batons on n vertices with $2s$ leaves, the balanced baton $B_n(s, s)$ is optimal whenever $s \geq \log_2(n)$.
OPTIMAL BATONS

Theorem

Among all batons on \(n \) vertices with \(2s \) leaves, the balanced baton \(B_n(s, s) \) is optimal whenever \(s \geq \log_2(n) \).

Theorem

If \(B_n(s_n, s_n) \) is optimal among all balanced batons of order \(n \), then for \(n \) sufficiently large,

\[
2 \log_2(n) - 2 < s_n < 2 \log_2(n) + 1.
\]
OPTIMAL BATONS

Theorem

Among all batons on n vertices with 2s leaves, the balanced baton \(B_n(s, s) \) is optimal whenever \(s \geq \log_2(n) \).

Theorem

If \(B_n(s_n, s_n) \) is optimal among all balanced batons of order n, then for n sufficiently large,

\[
2 \log_2(n) - 2 < s_n < 2 \log_2(n) + 1.
\]

Corollary

For each natural number n, there is a caterpillar of order n with mean subtree order at least \(n - 2 \log_2(n) - 2 \).
This last corollary, together with Jamison’s bound on the mean subtree order in terms of the number of leaves, tells us something about optimal trees among all trees of a fixed order.
This last corollary, together with Jamison’s bound on the mean subtree order in terms of the number of leaves, tells us something about optimal trees among all trees of a fixed order.

Corollary

Suppose that T_n is an optimal tree among all trees of order n. Then T_n has at most

$$4 \log_2(n) + 4$$

leaves.
Plan

Background

The Gluing Lemma

Optimal Batons

Optimal Caterpillars

Conclusion
THE NUMBER OF LEAVES IN AN OPTIMAL CATERPILLAR

- It would be nice to get a lower bound on the number of leaves in an optimal tree among all trees of order n.

Theorem
If T is optimal among all caterpillars of order n, then T has at least $\log_2(n) - \log_2(\log_2(n) + 1) - \log_2(3)$ leaves.

It follows that the number of leaves in an optimal caterpillar of order n is $\Theta(\log_2(n))$.
The number of leaves in an optimal caterpillar

- It would be nice to get a lower bound on the number of leaves in an optimal tree among all trees of order n.
- We have achieved a lower bound on the number of leaves in an optimal tree among all caterpillars of order n.

Theorem

If T is optimal among all caterpillars of order n, then T has at least

$$\log_2(n) - \log_2(\log_2(n) + 1) - \log_2(3),$$

leaves.

It follows that the number of leaves in an optimal caterpillar of order n is $\Theta(\log_2(n))$.

Conclusion
It would be nice to get a lower bound on the number of leaves in an optimal tree among all trees of order n.

We have achieved a lower bound on the number of leaves in an optimal tree among all caterpillars of order n.

Theorem

If T is optimal among all caterpillars of order n, then T has at least

$$\log_2(n) - \log_2(\log_2(n) + 1) - \log_2(3),$$

leaves.
THE NUMBER OF LEAVES IN AN OPTIMAL CATERPILLAR

- It would be nice to get a lower bound on the number of leaves in an optimal tree among all trees of order \(n \).

- We have achieved a lower bound on the number of leaves in an optimal tree among all caterpillars of order \(n \).

Theorem

If \(T \) is optimal among all caterpillars of order \(n \), then \(T \) has at least

\[\log_2(n) - \log_2(\log_2(n) + 1) - \log_2(3), \]

leaves.

- It follows that the number of leaves in an optimal caterpillar of order \(n \) is \(\Theta(\log_2(n)) \).
PROOF

The tree obtained from T by deleting all leaves is called the \textit{stem} of T.
The tree obtained from T by deleting all leaves is called the \textit{stem} of T.

Lemma

\begin{align*}
\text{Let } T \text{ be a tree with } \ell \leq n - 2 \text{ leaves and let } S \text{ be the stem of } T. \text{ Then} \\
N_T & \leq N_S \cdot 2^\ell,
\end{align*}

where N_T is the number of subtrees of T and N_S is the number of subtrees of S.
PROOF

- Let T be optimal among all caterpillars of order n.
PROOF

- Let T be optimal among all caterpillars of order n.
- Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2(n) + 3} \right)$ leaves.
PROOF

- Let T be optimal among all caterpillars of order n.
- Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2(n) + 3} \right)$ leaves.
- Let S be the stem of T (note that S is a path).
PROOF

▷ Let T be optimal among all caterpillars of order n.
▷ Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2(n) + 3} \right)$ leaves.
▷ Let S be the stem of T (note that S is a path).
▷ The subtrees of T can be partitioned into two types:
PROOF

- Let T be optimal among all caterpillars of order n.
- Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2(n) + 3} \right)$ leaves.
- Let S be the stem of T (note that S is a path).
- The subtrees of T can be partitioned into two types:
 1. Those that are contained in S.
PROOF

- Let T be optimal among all caterpillars of order n.
- Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2(n) + 3} \right)$ leaves.
- Let S be the stem of T (note that S is a path).
- The subtrees of T can be partitioned into two types:
 1. Those that are contained in S.
 - There are N_S such subtrees with mean order M_S.
PROOF

- Let T be optimal among all caterpillars of order n.
- Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2(n) + 3} \right)$ leaves.
- Let S be the stem of T (note that S is a path).
- The subtrees of T can be partitioned into two types:

1. Those that are contained in S.
 - There are N_S such subtrees with mean order M_S.
 - Since S is a path of order at most $n - 2$, $M_S \leq \frac{n}{3}$.
PROOF

- Let T be optimal among all caterpillars of order n.
- Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2(n) + 3} \right)$ leaves.
- Let S be the stem of T (note that S is a path).
- The subtrees of T can be partitioned into two types:
 1. Those that are contained in S.
 - There are N_S such subtrees with mean order M_S.
 - Since S is a path of order at most $n - 2$, $M_S \leq \frac{n}{3}$.
 2. Those that are not contained in S.
PROOF

- Let T be optimal among all caterpillars of order n.
- Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2 (n) + 3} \right)$ leaves.
- Let S be the stem of T (note that S is a path).
- The subtrees of T can be partitioned into two types:
 1. Those that are contained in S.
 - There are N_S such subtrees with mean order M_S.
 - Since S is a path of order at most $n - 2$, $M_S \leq \frac{n}{3}$.
 2. Those that are not contained in S.
 - There are $N_T - N_S$ such subtrees and we denote their mean order \overline{M}_S.
PROOF

- Let T be optimal among all caterpillars of order n.
- Suppose that T has $\ell \leq \log_2 \left(\frac{n}{3 \log_2(n) + 3} \right)$ leaves.
- Let S be the stem of T (note that S is a path).
- The subtrees of T can be partitioned into two types:

 1. Those that are contained in S.
 - There are N_S such subtrees with mean order M_S.
 - Since S is a path of order at most $n - 2$, $M_S \leq \frac{n}{3}$.

 2. Those that are not contained in S.
 - There are $N_T - N_S$ such subtrees and we denote their mean order $\overline{M_S}$.

- We want to show that $M_T < n - 2 \log_2(n) - 2$.
PLAN

<table>
<thead>
<tr>
<th>BACKGROUND</th>
<th>THE GLUING LEMMA</th>
<th>OPTIMAL BATONS</th>
<th>OPTIMAL CATERPILLARS</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKGROUND</td>
<td>The Gluing Lemma</td>
<td>Optimal Batons</td>
<td>Optimal Caterpillars</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Key results

1. In any optimal tree of order n, all limbs have order 1.
2. An optimal tree of order n has $O(\log_2 n)$ leaves.
3. An optimal caterpillar of order n has $\Theta(\log_2 n)$ leaves.
Key Results

- In any optimal tree of order n, all limbs have order 1.
Key results

- In any optimal tree of order n, all limbs have order 1.

- An optimal tree of order n has $O(\log_2 n)$ leaves.
Key results

- In any optimal tree of order n, all limbs have order 1.

- An optimal tree of order n has $O(\log_2 n)$ leaves.

- An optimal caterpillar of order n has $\Theta(\log_2 n)$ leaves.
OPEN PROBLEMS

- While the caterpillar conjecture remains undecided, we suspect that it is true. We have tried several proof techniques to no avail.

- While we have an upper bound on the number of leaves in an optimal tree of order n (and we suspect that it is fairly tight), we lack a lower bound.

- We suspect that our lower bound on the number of leaves in an optimal caterpillar of order n can be improved.