Circular repetition thresholds for small alphabets:
Last cases of Gorbunova’s Conjecture

Lucas Mol
Joint work with James D. Currie and Narad Rampersad

Prairie Discrete Math Workshop
Brandon University
June 12, 2018
Plan

Background

Four letters

Five letters

Conclusion
<table>
<thead>
<tr>
<th>Background</th>
<th>Four letters</th>
<th>Five letters</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plan

Background

Four letters

Five letters

Conclusion
Words

- A (linear) word is a finite string of letters taken from a finite alphabet.
- We could take the English alphabet, the binary alphabet \{0, 1\}, etc.
- For words \(x\) and \(y\), \(xy\) denotes the concatenation of \(x\) and \(y\).
 - e.g. If \(x = \text{book}\) and \(y = \text{case}\), then \(xy = \text{bookcase}\).
- A word \(y\) is a factor of a word \(w\) if we can write \(w = xyz\) for some (possibly empty) words \(x\) and \(z\).
 - e.g. The word \(\text{Brandon}\) has factors including \(\text{ran}\) and \(\text{Brand}\) (and \(\text{and}\)).
- The length of word \(w\) is denoted \(|w|\).
Words

• A (linear) word is a finite string of letters taken from a finite alphabet.
Words

• A (linear) word is a finite string of letters taken from a finite alphabet.

• We could take the English alphabet, the binary alphabet \{0, 1\}, etc.
Words

- A *(linear)* word is a finite string of letters taken from a finite alphabet.
- We could take the English alphabet, the binary alphabet \{0, 1\}, etc.
- For words \(x\) and \(y\), \(xy\) denotes the concatenation of \(x\) and \(y\).
Words

- A *(linear)* word is a finite string of letters taken from a finite alphabet.
- We could take the English alphabet, the binary alphabet \{0, 1\}, etc.
- For words x and y, xy denotes the concatenation of x and y.
 - e.g. If $x = \text{book}$ and $y = \text{case}$, then $xy = \text{bookcase}$.
Words

- A *linear* word is a finite string of letters taken from a finite alphabet.

- We could take the English alphabet, the binary alphabet \{0, 1\}, etc.

- For words \(x\) and \(y\), \(xy\) denotes the concatenation of \(x\) and \(y\).
 - e.g. If \(x = \text{book}\) and \(y = \text{case}\), then \(xy = \text{bookcase}\).

- A word \(y\) is a factor of a word \(w\) if we can write

 \[w = xyz \]

 for some (possibly empty) words \(x\) and \(z\).
Words

• A \textit{(linear)} \textit{word} is a finite string of letters taken from a finite alphabet.

• We could take the English alphabet, the binary alphabet \{0, 1\}, etc.

• For words x and y, xy denotes the concatenation of x and y.

 • \textit{e.g.} If $x = \text{book}$ and $y = \text{case}$, then $xy = \text{bookcase}$.

• A word y is a \textit{factor} of a word w if we can write

 $$w = xyz$$

 for some (possibly empty) words x and z.

 • \textit{e.g.} The word \textit{Brandon} has factors including \textit{ran} and \textit{Brand} (and \textit{and}).
Words

• A *linear* word is a finite string of letters taken from a finite alphabet.

• We could take the English alphabet, the binary alphabet \{0, 1\}, etc.

• For words \(x\) and \(y\), \(xy\) denotes the concatenation of \(x\) and \(y\).

 • e.g. If \(x = \text{book}\) and \(y = \text{case}\), then \(xy = \text{bookcase}\).

• A word \(y\) is a *factor* of a word \(w\) if we can write

\[w = xyz \]

for some (possibly empty) words \(x\) and \(z\).

 • e.g. The word *Brandon* has factors including *ran* and *Brand* (and and).

• The length of word \(w\) is denoted \(|w|\).
Repetitions

Let \(w = w_1 \ldots w_n \), where the \(w_i \) are letters.

- We say that \(w \) is periodic if for some positive integer \(p \),
 \[w_i + p = w_i \]
 for all \(1 \leq i \leq n - p \).

- In this case, \(p \) is called a period of \(w \).

- e.g. The English word alfalfa has period 3.

- The exponent of \(w \) is the ratio between its length and its minimal period.

- e.g. The word alfalfa has length 7 and minimal period 3, so it has exponent \(7/3 \).

- We will mostly be interested in factors of exponent \(\beta \) where \(1 < \beta < 2 \), which can always be written as \(xyx \) with
 \[|xyx|/|xy| = \beta. \]
Repetitions

Let $w = w_1 \ldots w_n$, where the w_i are letters.
Repetitions

Let $w = w_1 \ldots w_n$, where the w_i are letters.

- We say that w is periodic if for some positive integer p, $w_{i+p} = w_i$ for all $1 \leq i \leq n - p$.
Repetitions

Let $w = w_1 \ldots w_n$, where the w_i are letters.

- We say that w is periodic if for some positive integer p, $w_{i+p} = w_i$ for all $1 \leq i \leq n - p$.
- In this case, p is called a period of w.
Repetitions

Let $w = w_1 \ldots w_n$, where the w_i are letters.

• We say that w is periodic if for some positive integer p, $w_{i+p} = w_i$ for all $1 \leq i \leq n - p$.

• In this case, p is called a period of w.
 • e.g. The English word alfalfa has period 3
Repetitions

Let $w = w_1 \ldots w_n$, where the w_i are letters.

- We say that w is periodic if for some positive integer p, $w_{i+p} = w_i$ for all $1 \leq i \leq n - p$.
- In this case, p is called a period of w.
 - e.g. The English word alfalfa has period 3
- The exponent of w is the ratio between its length and its minimal period.
Repetitions

Let $w = w_1 \ldots w_n$, where the w_i are letters.

- We say that w is periodic if for some positive integer p, $w_{i+p} = w_i$ for all $1 \leq i \leq n - p$.
- In this case, p is called a period of w.
 - e.g. The English word alfalfa has period 3
- The exponent of w is the ratio between its length and its minimal period.
 - e.g. The word alfalfa has length 7 and minimal period 3, so it has exponent $7/3$. i.e. alfalfa $= \text{alf}^{7/3}$
Repetitions

Let $w = w_1 \ldots w_n$, where the w_i are letters.

- We say that w is periodic if for some positive integer p, $w_{i+p} = w_i$ for all $1 \leq i \leq n - p$.
- In this case, p is called a period of w.
 - e.g. The English word alfalfa has period 3
- The exponent of w is the ratio between its length and its minimal period.
 - e.g. The word alfalfa has length 7 and minimal period 3, so it has exponent $7/3$. i.e. alfalfa = alf$^{7/3}$
- We will mostly be interested in factors of exponent β where $1 < \beta < 2$, which can always be written as xyx with $|xyx|/|xy| = \beta$.
Repetition-free words
Repetition-free words

- A word is called β-free if it has no factors of exponent greater than or equal to β
Repetition-free words

• A word is called β-free if it has no factors of exponent greater than or equal to β

• A word is called β^+-free if it has no factors of exponent strictly greater than β.
Repetition-free words

- A word is called β-free if it has no factors of exponent greater than or equal to β
- A word is called β^+-free if it has no factors of exponent strictly greater than β.
 - The word mathematics has the factor mathemat, which has exponent $\frac{8}{5}$. However, mathematics is $\frac{8}{5}^+$-free.
Repetition-free words

- A word is called β-free if it has no factors of exponent greater than or equal to β.
- A word is called β^+-free if it has no factors of exponent strictly greater than β.
 - The word *mathematics* has the factor *mathemat*, which has exponent $\frac{8}{5}$. However, *mathematics* is $\frac{8^+}{5}$-free.

Theorem (Thue, 1906)

Over a two letter alphabet, there is a word of every length that is 2^+-free.
Repetition-free words

• A word is called β-free if it has no factors of exponent greater than or equal to β.

• A word is called β^+-free if it has no factors of exponent strictly greater than β.

 • The word mathematics has the factor mathemat, which has exponent $\frac{8}{5}$. However, mathematics is $\frac{8}{5}^+$-free.

Theorem (Thue, 1906)

Over a two letter alphabet, there is a word of every length that is 2^+-free.

Further, every sufficiently long word on two letters contains a factor of exponent 2 (a square).
Dejean’s Conjecture

Definition (Dejean, 1972)

Let $k \geq 2$. The repetition threshold for k letters, denoted $RT(k)$, is the infimum of the set of all β such that there are β-free words of every length on k letters.

- With this terminology, Thue demonstrated that $RT(2) = 2$.

Conjecture (Dejean, 1972)

$$
RT(k) = \begin{cases}
7 & \text{if } k = 3 \\
5 & \text{if } k = 4 \\
k - 1 & \text{if } k \geq 5
\end{cases}
$$
Dejean’s Conjecture

Definition (Dejean, 1972)

Let \(k \geq 2 \). The *repetition threshold* for \(k \) letters, denoted \(RT(k) \), is the infimum of the set of all \(\beta \) such that there are \(\beta \)-free words of every length on \(k \) letters.
Dejean’s Conjecture

Definition (Dejean, 1972)

Let $k \geq 2$. The repetition threshold for k letters, denoted $RT(k)$, is the infimum of the set of all β such that there are β-free words of every length on k letters.

• With this terminology, Thue demonstrated that $RT(2) = 2$.
Dejean’s Conjecture

Definition (Dejean, 1972)

Let $k \geq 2$. The repetition threshold for k letters, denoted $RT(k)$, is the infimum of the set of all β such that there are β-free words of every length on k letters.

- With this terminology, Thue demonstrated that $RT(2) = 2$.

Conjecture (Dejean, 1972)

$$RT(k) = \begin{cases} \frac{7}{4} & \text{if } k = 3 \\ \frac{7}{5} & \text{if } k = 4 \\ \frac{k}{k-1} & \text{if } k \geq 5. \end{cases}$$
Progress on Dejean’s Conjecture

\[k = 3 \quad \text{Dejean} \quad 1972 \]
Progress on Dejean’s Conjecture

<table>
<thead>
<tr>
<th>k</th>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Dejean</td>
<td>1972</td>
</tr>
<tr>
<td>4</td>
<td>Pansiot</td>
<td>1984</td>
</tr>
</tbody>
</table>
Progress on Dejean’s Conjecture

\[
\begin{align*}
k = 3 & \quad \text{Dejean} \quad 1972 \\
k = 4 & \quad \text{Pansiot} \quad 1984 \\
5 \leq k \leq 11 & \quad \text{Moulin-Ollagnier} \quad 1992
\end{align*}
\]
Progress on Dejean’s Conjecture

\[k = 3 \]
Dejean
1972

\[k = 4 \]
Pansiot
1984

\[5 \leq k \leq 11 \]
Moulin-Ollagnier
1992

\[12 \leq k \leq 14 \]
Currie, Mohammad-Noori
2004
Progress on Dejean’s Conjecture

<table>
<thead>
<tr>
<th>Case</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 3$</td>
<td>Dejean</td>
<td>1972</td>
</tr>
<tr>
<td>$k = 4$</td>
<td>Pansiot</td>
<td>1984</td>
</tr>
<tr>
<td>$5 \leq k \leq 11$</td>
<td>Moulin-Ollagnier</td>
<td>1992</td>
</tr>
<tr>
<td>$12 \leq k \leq 14$</td>
<td>Currie, Mohammad-Noori</td>
<td>2004</td>
</tr>
<tr>
<td>$k \geq 33$</td>
<td>Carpi</td>
<td>2007</td>
</tr>
</tbody>
</table>
Progress on Dejean’s Conjecture

\[
k = 3 \quad \text{Dejean} \quad 1972
\]
\[
k = 4 \quad \text{Pansiot} \quad 1984
\]
\[
5 \leq k \leq 11 \quad \text{Moulin-Ollagnier} \quad 1992
\]
\[
12 \leq k \leq 14 \quad \text{Currie, Mohammad-Noori} \quad 2004
\]
\[
27 \leq k \leq 32 \quad \text{Currie, Rampersad} \quad 2008
\]
\[
k \geq 33 \quad \text{Carpi} \quad 2007
\]
Progress on Dejean’s Conjecture

<table>
<thead>
<tr>
<th>k</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 3$</td>
<td>Dejean</td>
<td>1972</td>
</tr>
<tr>
<td>$k = 4$</td>
<td>Pansiot</td>
<td>1984</td>
</tr>
<tr>
<td>$5 \leq k \leq 11$</td>
<td>Moulin-Ollagnier</td>
<td>1992</td>
</tr>
<tr>
<td>$12 \leq k \leq 14$</td>
<td>Currie, Mohammad-Noori</td>
<td>2004</td>
</tr>
<tr>
<td>$15 \leq k \leq 26$</td>
<td>Rao and Currie, Rampersad</td>
<td>2009</td>
</tr>
<tr>
<td>$27 \leq k \leq 32$</td>
<td>Currie, Rampersad</td>
<td>2008</td>
</tr>
<tr>
<td>$k \geq 33$</td>
<td>Carpi</td>
<td>2007</td>
</tr>
</tbody>
</table>
Progress on Dejean’s Conjecture

\[k = 3 \quad \text{Dejean} \quad 1972 \]

\[k = 4 \quad \text{Pansiot} \quad 1984 \]

\[5 \leq k \leq 11 \quad \text{Moulin-Ollagnier} \quad 1992 \]

\[12 \leq k \leq 14 \quad \text{Currie, Mohammad-Noori} \quad 2004 \]

\[15 \leq k \leq 26 \quad \text{Rao and Currie, Rampersad} \quad 2009 \]

\[27 \leq k \leq 32 \quad \text{Currie, Rampersad} \quad 2008 \]

\[k \geq 33 \quad \text{Carpi} \quad 2007 \]
Circular words

Intuitively, a circular word is obtained from a linear word by linking the ends, giving a cyclic sequence of letters. Factors don't "wrap around" more than once. i.e. The longest factors of a circular word of length n have length n. As a linear word, onion is 2-free. However, the circular word (onion) has factor onon, so it is not 2-free.
Circular words

- Intuitively, a circular word is obtained from a linear word by linking the ends, giving a cyclic sequence of letters.
Circular words

- Intuitively, a circular word is obtained from a linear word by linking the ends, giving a cyclic sequence of letters.
- Factors don’t “wrap around” more than once.
Circular words

• Intuitively, a circular word is obtained from a linear word by linking the ends, giving a cyclic sequence of letters.
• Factors don’t “wrap around” more than once.
• i.e. The longest factors of a circular word of length n have length n.
Circular words

- Intuitively, a circular word is obtained from a linear word by linking the ends, giving a cyclic sequence of letters.
- Factors don’t “wrap around” more than once.
- i.e. The longest factors of a circular word of length n have length n.

- As a linear word, onion is 2-free.
Circular words

• Intuitively, a circular word is obtained from a linear word by linking the ends, giving a cyclic sequence of letters.
• Factors don’t “wrap around” more than once.
• i.e. The longest factors of a circular word of length n have length n.

• As a linear word, onion is 2-free.
• However, the circular word (onion) has factor onon, so it is not 2-free.
Circular Repetition Threshold

Definition

Let $k \geq 2$. The *circular repetition threshold* for k letters, denoted $\text{CRT}(k)$, is the infimum of the set of all β such that there are β-free circular words of every length on k letters.
Known values of the circular repetition threshold

- CRT(2) = 5 (Aberkane, Currie, 2004)
- CRT(3) = 2 (Currie, 2002)
- Conjecture (Gorbunova, 2012)
 For all \(k \geq 4 \), CRT(\(k \)) = \(\lceil k/2 \rceil \) + 1
- Gorbunova confirmed her conjecture for all \(k \geq 6 \).
- Last remaining cases: CRT(4) and CRT(5).
Known values of the circular repetition threshold

- \(\text{CRT}(2) = \frac{5}{2} \) (Aberkane, Currie, 2004)
Known values of the circular repetition threshold

- CRT(2) = $\frac{5}{2}$ (Aberkane, Currie, 2004)
- CRT(3) = 2 (Currie, 2002)
Known values of the circular repetition threshold

- $\text{CRT}(2) = \frac{5}{2}$ (Aberkane, Currie, 2004)
- $\text{CRT}(3) = 2$ (Currie, 2002)

Conjecture (Gorbunova, 2012)

For all $k \geq 4$,

$$\text{CRT}(k) = \frac{\lceil k/2 \rceil + 1}{\lceil k/2 \rceil}$$
Known values of the circular repetition threshold

- CRT(2) = $\frac{5}{2}$ (Aberkane, Currie, 2004)
- CRT(3) = 2 (Currie, 2002)

Conjecture (Gorbunova, 2012)

For all $k \geq 4$,

$$CRT(k) = \frac{\lceil k/2 \rceil + 1}{\lceil k/2 \rceil}$$

- Gorbunova confirmed her conjecture for all $k \geq 6$.

• Last remaining cases: CRT(4) and CRT(5).
Known values of the circular repetition threshold

- CRT(2) = $\frac{5}{2}$ (Aberkane, Currie, 2004)
- CRT(3) = 2 (Currie, 2002)

Conjecture (Gorbunova, 2012)

For all $k \geq 4$,

$$
\text{CRT}(k) = \frac{\lceil k/2 \rceil + 1}{\lfloor k/2 \rfloor}
$$

- Gorbunova confirmed her conjecture for all $k \geq 6$.
- Last remaining cases: CRT(4) and CRT(5).
Last Cases of Gorbunova’s Conjecture

<table>
<thead>
<tr>
<th>k</th>
<th>$RT(k)$</th>
<th>$CRT(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>7/4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>7/5</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>5/4</td>
<td>4/3</td>
</tr>
<tr>
<td>6</td>
<td>6/5</td>
<td>4/3</td>
</tr>
<tr>
<td>7</td>
<td>7/6</td>
<td>5/4</td>
</tr>
<tr>
<td>8</td>
<td>8/7</td>
<td>5/4</td>
</tr>
<tr>
<td>9</td>
<td>9/8</td>
<td>6/5</td>
</tr>
<tr>
<td>10</td>
<td>10/9</td>
<td>6/5</td>
</tr>
</tbody>
</table>
The lower bound

Proposition (Gorbunova, 2012)

For any \(k \geq 4 \), there are no circular \(\lceil k/2 \rceil + 1 \lceil k/2 \rceil \)-free words of length \(k + 1 \) over a \(k \) letter alphabet.

Sketch of Proof.

• Pigeonhole principle.

So to prove the last two cases of Gorbunova's Conjecture, it suffices to find

• \(3^2 + \) -free circular words of every length on 4 letters, and
• \(4^3 + \) -free circular words of every length on 5 letters.
The lower bound

Proposition (Gorbunova, 2012)

For any $k \geq 4$, there are no circular $\lceil k/2 \rceil + 1$-free words of length $k + 1$ over a k-letter alphabet.
The lower bound

Proposition (Gorbunova, 2012)

For any $k \geq 4$, there are no circular $\left\lceil \frac{k}{2} \right\rceil + 1$-free words of length $k + 1$ over a k letter alphabet.

Sketch of Proof.
The lower bound

Proposition (Gorbunova, 2012)

For any $k \geq 4$, there are no circular $\frac{\lceil k/2 \rceil + 1}{\lceil k/2 \rceil}$-free words of length $k + 1$ over a k-letter alphabet.

Sketch of Proof.

- Pigeonhole principle.
The lower bound

Proposition (Gorbunova, 2012)

For any $k \geq 4$, there are no circular $\left\lceil \frac{k}{2} \right\rceil + 1$-free words of length $k + 1$ over a k-letter alphabet.

Sketch of Proof.

- Pigeonhole principle.

So to prove the last two cases of Gorbunova’s Conjecture, it suffices to find
The lower bound

Proposition (Gorbunova, 2012)

For any $k \geq 4$, there are no circular $\left\lceil \frac{k}{2} \right\rceil + 1$-free words of length $k + 1$ over a k-letter alphabet.

Sketch of Proof.

- Pigeonhole principle.

So to prove the last two cases of Gorbunova’s Conjecture, it suffices to find
 - $\frac{3}{2}^+$-free circular words of every length on 4 letters, and
The lower bound

Proposition (Gorbunova, 2012)

For any $k \geq 4$, there are no circular $\left\lceil \frac{k}{2} \right\rceil + 1 -$free words of length $k + 1$ over a k-letter alphabet.

Sketch of Proof.

• Pigeonhole principle.

So to prove the last two cases of Gorbunova’s Conjecture, it suffices to find

• $\frac{3}{2}^+$-free circular words of every length on 4 letters, and
• $\frac{4}{3}^+$-free circular words of every length on 5 letters.
Plan

Background

Four letters

Five letters

Conclusion
Morphisms

• An r-uniform morphism takes a word as input and replaces every letter by a word of length r.

• A morphism f preserves β-freeness if $f(w)$ is β-free whenever w is β-free.

• Iterating gives β-free words of arbitrarily long length.
Morphisms

- An \(r \)-uniform morphism takes a word as input and replaces every letter by a word of length \(r \).
Morphisms

• An r-uniform morphism takes a word as input and replaces every letter by a word of length r.

• A morphism f preserves β-freeness if $f(w)$ is β-free whenever w is β-free.
Morphisms

• An \textit{r-uniform morphism} takes a word as input and replaces every letter by a word of length \(r \).

• A morphism \(f \) preserves \(\beta \)-freeness if \(f(w) \) is \(\beta \)-free whenever \(w \) is \(\beta \)-free.

• Iterating gives \(\beta \)-free words of arbitrarily long length.
Four letters

Idea:

Four letters

Problem:
• If a linear word is β-free, then so are all of its factors.
• This is not the case for circular words.
 • e.g. (discrete) is 2-free, but (ete) is not.

Solution:
• Use two different morphisms: an r-uniform morphism and an s-uniform morphism (where r and s are relatively prime).
Four letters

Idea:

• Find a uniform morphism that preserves $\frac{3}{2}^+$-freeness for circular words.
Four letters

Idea:

• Find a uniform morphism that preserves $\frac{3}{2}^+$-freeness for circular words.

Problem:
Four letters

Idea:

• Find a uniform morphism that preserves $\frac{3^+}{2}$-freeness for circular words.

Problem:

• If a linear word is β-free, then so are all of its factors.
Four letters

Idea:

• Find a uniform morphism that preserves $\frac{3}{2}^+$-freeness for circular words.

Problem:

• If a linear word is β-free, then so are all of its factors.
• This is not the case for circular words.
Four letters

Idea:

• Find a uniform morphism that preserves $\frac{3}{2}^+$-freeness for circular words.

Problem:

• If a linear word is β-free, then so are all of its factors.
• This is not the case for circular words.
 • e.g. (discrete) is 2-free, but (ete) is not.
Four letters

Idea:

- Find a uniform morphism that preserves $\frac{3}{2}^+$-freeness for circular words.

Problem:

- If a linear word is β-free, then so are all of its factors.
- This is not the case for circular words.
 - e.g. (discrete) is 2-free, but (ete) is not.
- Starting with a single letter, and iteratively applying an r-uniform morphism only gives words of length r^n.
Four letters

Idea:
• Find a uniform morphism that preserves $\frac{3}{2}^+$-freeness for circular words.

Problem:
• If a linear word is β-free, then so are all of its factors.
• This is not the case for circular words.
 • e.g. (discrete) is 2-free, but (ete) is not.
• Starting with a single letter, and iteratively applying an r-uniform morphism only gives words of length r^n.

Solution:
Four letters

Idea:

• Find a uniform morphism that preserves $\frac{3}{2}^+$-freeness for circular words.

Problem:

• If a linear word is β-free, then so are all of its factors.
• This is not the case for circular words.
 • e.g. (discrete) is 2-free, but (ete) is not.
• Starting with a single letter, and iteratively applying an r-uniform morphism only gives words of length r^n.

Solution:

• Use two different morphisms: an r-uniform morphism and an s-uniform morphism (where r and s are relatively prime).
Constructing circular $\frac{3}{2}^+$-free words on four letters
Constructing circular $\frac{3^+}{2}$-free words on four letters

- Find a 9-uniform morphism f_9 and an 11-uniform morphism f_{11} that preserve $\frac{3^+}{2}$-freeness.
Constructing circular $\frac{3^+}{2}$-free words on four letters

- Find a 9-uniform morphism f_9 and an 11-uniform morphism f_{11} that preserve $\frac{3^+}{2}$-freeness.
- Define f_9 by:

 \begin{align*}
 0 & \mapsto 012132310 \\
 1 & \mapsto 123203021 \\
 2 & \mapsto 230310132 \\
 3 & \mapsto 301021203
 \end{align*}
Constructing circular $\frac{3^+}{2}$-free words on four letters

- Find a 9-uniform morphism f_9 and an 11-uniform morphism f_{11} that preserve $\frac{3^+}{2}$-freeness.

- Define f_9 by:

\[
\begin{align*}
0 & \mapsto 012132310 \\
1 & \mapsto 123203021 \\
2 & \mapsto 230310132 \\
3 & \mapsto 301021203
\end{align*}
\]

- Define f_{11} by:

\[
\begin{align*}
0 & \mapsto 01213231210 \\
1 & \mapsto 12320302321 \\
2 & \mapsto 23031013032 \\
3 & \mapsto 30102120103
\end{align*}
\]
Constructing circular $\frac{3}{2}^+$-free words on four letters
Constructing circular $\frac{3}{2}^+$-free words on four letters

• Use a strong inductive argument.
Constructing circular $\frac{3}{2}^+$-free words on four letters

- Use a strong inductive argument.
- Find some short words by computer search to get things started.
Constructing circular $\frac{3}{2}^+$-free words on four letters

- Use a strong inductive argument.
- Find some short words by computer search to get things started.
- Assume we have found a $\frac{3}{2}^+$-free circular word of every length less than n.
Constructing circular $\frac{3}{2}^+$-free words on four letters

• Use a strong inductive argument.
• Find some short words by computer search to get things started.
• Assume we have found a $\frac{3}{2}^+$-free circular word of every length less than n.
• For n sufficiently large, using the Postage Stamp Lemma, we can write

\[n = 9k + 11\ell, \]

for $k \geq 8$ and $2 \leq \ell \leq 10$.
Constructing circular $\frac{3}{2}^+$-free words on four letters

• Use a strong inductive argument.
• Find some short words by computer search to get things started.
• Assume we have found a $\frac{3}{2}^+$-free circular word of every length less than n.
• For n sufficiently large, using the Postage Stamp Lemma, we can write
 \[n = 9k + 11\ell, \]
 for $k \geq 8$ and $2 \leq \ell \leq 10$.
• Take a $\frac{3}{2}^+$-free circular word (w) of length $k + \ell$, and write it as $w = uv$, where $|u| = k$ and $|v| = \ell$.
Constructing circular $\frac{3}{2}^+$-free words on four letters

- Use a strong inductive argument.
- Find some short words by computer search to get things started.
- Assume we have found a $\frac{3}{2}^+$-free circular word of every length less than n.
- For n sufficiently large, using the Postage Stamp Lemma, we can write
 \[n = 9k + 11\ell, \]
 for $k \geq 8$ and $2 \leq \ell \leq 10$.
- Take a $\frac{3}{2}^+$-free circular word (w) of length $k + \ell$, and write it as $w = uv$, where $|u| = k$ and $|v| = \ell$.
- Claim: $(f_9(u)f_{11}(v))$ is $\frac{3}{2}^+$-free.
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u) f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

• Then $(f_9(u) f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.

Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

- Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.
- Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

- Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.
- Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.
- Then have several cases:
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

• Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.

• Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.

• Then have several cases:
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

• Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.

• Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.

• Then have several cases:
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

- Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.
- Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.
- Then have several cases:
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

• Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.

• Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.

• Then have several cases:

```
  f_{11}(v)
  |
  x y x
```
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

• Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.

• Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.

• Then have several cases:

\[\begin{array}{c|c|c}
 & f_9(u) & f_{11}(v) \\
\hline
x & y & x
\end{array}\]
Constructing circular $\frac{3}{2}^+\text{-free}$ words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u) f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

- Then $(f_9(u) f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.
- Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.
- Then have several cases:
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

• Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.

• Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.

• Then have several cases:
Constructing circular $\frac{3}{2}^+$-free words on four letters

Sketch of Proof.

Suppose otherwise that $(f_9(u)f_{11}(v))$ contains some factor with exponent greater than $\frac{3}{2}$.

• Then $(f_9(u)f_{11}(v))$ has some factor of the form xyx, where $|x| > |y|$.

• Argue that if $|x|$ is sufficiently large, it appears in only one of $f_9(u)$ or $f_{11}(v)$.

• Then have several cases:
Therefore,
Therefore,

\[\text{CRT}(4) = \frac{3}{2}. \]
Plan

Background

Four letters

Five letters

Conclusion
Gorbunova’s technique for larger alphabets

- e.g. seven letter alphabet \{0, 1, 2, 3, 4, 5, 6\}.

<table>
<thead>
<tr>
<th>k</th>
<th>RT(k)</th>
<th>CRT(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>7/4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>7/5</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>5/4</td>
<td>4/3</td>
</tr>
<tr>
<td>6</td>
<td>6/5</td>
<td>4/3</td>
</tr>
<tr>
<td>7</td>
<td>7/6</td>
<td>5/4</td>
</tr>
<tr>
<td>8</td>
<td>8/7</td>
<td>5/4</td>
</tr>
<tr>
<td>9</td>
<td>9/8</td>
<td>6/5</td>
</tr>
<tr>
<td>10</td>
<td>10/9</td>
<td>6/5</td>
</tr>
</tbody>
</table>
Gorbunova’s technique for larger alphabets

• e.g. seven letter alphabet \{0, 1, 2, 3, 4, 5, 6\}.

<table>
<thead>
<tr>
<th>k</th>
<th>$RT(k)$</th>
<th>$CRT(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>7/4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>7/5</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>5/4</td>
<td>4/3</td>
</tr>
<tr>
<td>6</td>
<td>6/5</td>
<td>4/3</td>
</tr>
<tr>
<td>7</td>
<td>7/6</td>
<td>5/4</td>
</tr>
<tr>
<td>8</td>
<td>8/7</td>
<td>5/4</td>
</tr>
<tr>
<td>9</td>
<td>9/8</td>
<td>6/5</td>
</tr>
<tr>
<td>10</td>
<td>10/9</td>
<td>6/5</td>
</tr>
</tbody>
</table>
Gorbunova’s technique for larger alphabets
Gorbunova’s technique for larger alphabets

• Let u be a $\frac{5}{4}^+$-free word on $\{0, 1, 2, 3, 4\}$.
Gorbunova’s technique for larger alphabets

- Let u be a $\frac{5}{4}^+$-free word on $\{0, 1, 2, 3, 4\}$.
- Let

\[
w = \begin{array}{ccc}
06 & u & 60 \\
\{0, 1, 2, 3, 4\} & f(u) & \{2, 3, 4, 5, 6\}
\end{array}
\]

where f is a particular bijection.
Gorbunova’s technique for larger alphabets

- Let u be a $\frac{5}{4}$-free word on $\{0, 1, 2, 3, 4\}$.
- Let

$$w = \begin{array}{c|c|c}
06 & u & 60 \\
\{0, 1, 2, 3, 4\} & f(u) & \{2, 3, 4, 5, 6\}
\end{array}$$

where f is a particular bijection.
- Claim: There is such a word u of every length so that (w) is $\frac{5}{4}$-free.
Constructing circular $\frac{4}{3}^+$-free words on five letters
Constructing circular $\frac{4}{3}^+$-free words on five letters

Idea:
Constructing circular $\frac{4}{3}^+$-free words on five letters

Idea:
- Get a $\frac{4}{3}^+$-free word on four letters and use a construction similar to Gorbunova’s.

$$w = \begin{array}{c|c|c}
04 & u & 40 \\
\{0, 1, 2, 3\} & & \{1, 2, 3, 4\} \\
\end{array}$$

$$f(u)$$
Constructing circular $\frac{4}{3}^+\text{-free}$ words on five letters

Problem:

<table>
<thead>
<tr>
<th>k</th>
<th>RT(k)</th>
<th>CRT(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>7/4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>7/5</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>5/4</td>
<td>4/3</td>
</tr>
<tr>
<td>6</td>
<td>6/5</td>
<td>4/3</td>
</tr>
<tr>
<td>7</td>
<td>7/6</td>
<td>5/4</td>
</tr>
<tr>
<td>8</td>
<td>8/7</td>
<td>5/4</td>
</tr>
<tr>
<td>9</td>
<td>9/8</td>
<td>6/5</td>
</tr>
<tr>
<td>10</td>
<td>10/9</td>
<td>6/5</td>
</tr>
</tbody>
</table>
Constructing circular $\frac{4}{3}^+$-free words on five letters

Problem:

<table>
<thead>
<tr>
<th>k</th>
<th>RT(k)</th>
<th>CRT(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>7/4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>7/5</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>5/4</td>
<td>4/3</td>
</tr>
<tr>
<td>6</td>
<td>6/5</td>
<td>4/3</td>
</tr>
<tr>
<td>7</td>
<td>7/6</td>
<td>5/4</td>
</tr>
<tr>
<td>8</td>
<td>8/7</td>
<td>5/4</td>
</tr>
<tr>
<td>9</td>
<td>9/8</td>
<td>6/5</td>
</tr>
<tr>
<td>10</td>
<td>10/9</td>
<td>6/5</td>
</tr>
</tbody>
</table>
Constructing circular $\frac{4}{3}^+$-free words on five letters

Problem:

<table>
<thead>
<tr>
<th>k</th>
<th>$RT(k)$</th>
<th>$CRT(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>7/4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>7/5</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>5/4</td>
<td>4/3</td>
</tr>
<tr>
<td>6</td>
<td>6/5</td>
<td>4/3</td>
</tr>
<tr>
<td>7</td>
<td>7/6</td>
<td>5/4</td>
</tr>
<tr>
<td>8</td>
<td>8/7</td>
<td>5/4</td>
</tr>
<tr>
<td>9</td>
<td>9/8</td>
<td>6/5</td>
</tr>
<tr>
<td>10</td>
<td>10/9</td>
<td>6/5</td>
</tr>
</tbody>
</table>

- 7/5 is larger than 4/3. Uh-oh.
Constructing circular $\frac{4+}{3}$-free words on five letters
Constructing circular $\frac{4}{3}^+$-free words on five letters

Solution:
Constructing circular $\frac{4}{3}^+$-free words on five letters

Solution:

• In his work showing that $RT(4) = \frac{7}{5}$, Pansiot constructed words of every length where the only factors of exponent greater than $\frac{4}{3}$ look like

$$0123\ 102132\ 0123$$

up to permutation of the letters.
Constructing circular $\frac{4+}{3}$-free words on five letters

Solution:

• In his work showing that $RT(4) = \frac{7}{5}$, Pansiot constructed words of every length where the only factors of exponent greater than $\frac{4}{3}$ look like

$$0123 \ 102132 \ 0123$$

up to permutation of the letters.

• So eliminate these repetitions by “borrowing” the fifth letter.
Constructing circular $\frac{4+}{3}$-free words on five letters

Solution:

• In his work showing that $RT(4) = \frac{7}{5}$, Pansiot constructed words of every length where the only factors of exponent greater than $\frac{4}{3}$ look like

\[
0123 102132 0123
\]

up to permutation of the letters.

• So eliminate these repetitions by “borrowing” the fifth letter.
 • Fact: We don’t need the fifth letter too often.
Constructing circular $\frac{4+}{3}$-free words on five letters

Solution:

- In his work showing that $RT(4) = \frac{7}{5}$, Pansiot constructed words of every length where the only factors of exponent greater than $\frac{4}{3}$ look like

 0123 102132 0123

 up to permutation of the letters.

- So eliminate these repetitions by “borrowing” the fifth letter.
 - Fact: We don’t need the fifth letter too often.

 $$w = \begin{array}{|c|c|c|}
 \hline
 04 & u & 40 \\
 \hline
 \{0,1,2,3\} & \{1,2,3,4\} \\
 \text{(and a few 4’s)} & \text{(and a few 0’s)} \\
 \hline
\end{array}$$
Therefore,
Therefore,

\[\text{CRT}(5) = \frac{4}{3}. \]
Plan

Background

Four letters

Five letters

Conclusion
We now know that

\[
\text{CRT}(k) = \begin{cases}
\frac{5}{2} & \text{if } k = 2; \\
2 & \text{if } k = 3; \\
\left\lceil \frac{k/2}{\lfloor k/2 \rfloor} \right\rceil + 1 & \text{if } k \geq 4.
\end{cases}
\]
Something to think about...

Conjecture

For all $k \geq 4$,

$$\text{CRT}_W(k) = \text{CRT}_I(k) = \text{RT}(k).$$
Thank you.