PHYS-3202 Homework 3 Due 25 Sept 2019

This homework is due in the dropbox outside 2 L 26 by $10: 59 \mathrm{PM}$ on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Work Done on a Forced Oscillator from KB 2.25

Consider a harmonic oscillator with damping γ and natural frequency ω_{0} that experiences a force $F(t)=F \cos (\omega t)$. In the following, use the real solution for the oscillator position and neglect transients.
(a) Recall that the power, or work done on an object per unit time, is $P=F \dot{x}$. Find the power on the oscillator by the force $F(t)$ at time t. Then find its average over one period.
(b) The damping force is $-2 m \gamma \dot{x}$. Find the power by the damping force at time t and the average power over one period. Show that your result is the opposite of the power from the driving force, so the total work done on the oscillator over a period is zero.

2. Damped Unstable Equilibrium

Consider movement around the top of a parabolic potential including damping and an external driving force. The equation of motion is

$$
\begin{equation*}
\ddot{x}+2 \gamma \dot{x}-\kappa^{2} x=F(t) / m, \tag{1}
\end{equation*}
$$

where γ and κ are positive constants.
In the first 2 parts, set the driving force $F(t)=0$.
(a) Find the general solution to (11). Show that x grows exponentially in t after a short period of time.
(b) Assume x is given by the exponentially growing solution only. Show that the acceleration term in (11) is negligible when $\kappa \ll \gamma$. In other words, show that $|\ddot{x}| \ll 2 \gamma|\dot{x}|$ and $|\ddot{x}| \ll$ $\kappa^{2}|x|$. Physics very similar to this is important in the theory of inflation, which postulates that the early universe expanded very rapidly.
(c) Now consider sinusoidal forcing $F(t)=F e^{i \omega t}$. Write the general solution, including the solutions to the non-driven equation. Is it possible to neglect these extra terms after sufficient time passes?

3. Half-Wave Forcing

Consider a damped harmonic oscillator subject to the driving force

$$
F(t)=\left\{\begin{array}{cc}
F \sin (\omega t) & (0<t<\pi / \omega) \tag{2}\\
0 & (\pi / \omega<t<2 \pi / \omega)
\end{array} .\right.
$$

In other words, the driving force is the positive part of a sine wave. The oscillator has natural frequency ω_{0} and quality factor Q.
(a) Write $F(t)$ as a complex Fourier series.
(b) Write the solution for the oscillator as a Fourier series, neglecting transients.
(c) Suppose that $\omega_{0}=2 \omega$ and the quality factor $Q \gg 1$. Argue that oscillator position $x(t)$ is dominated by a single frequency, and write $x(t)$ in that approximation. Make sure to simplify the amplitude and phase lag as much as possible.

4. A Couple of Vector Identities

(a) from $K B A .7$ Using vector triple-product identities, write $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ in terms of the dot products $\vec{a} \cdot \vec{c}, \vec{b} \cdot \vec{c}, \vec{a} \cdot \vec{d}$, and $\vec{b} \cdot \vec{d}$
(b) from $K B A .8$ Verify the identity $\vec{\nabla} \times(\vec{a} \times \vec{b})=(\vec{\nabla} \cdot \vec{b}) \vec{a}+(\vec{b} \cdot \vec{\nabla}) \vec{a}-(\vec{\nabla} \cdot \vec{a}) \vec{b}-(\vec{a} \cdot \vec{\nabla}) \vec{b}$ by comparing the z component of each side of the identity.

