
PHYS-3202 Homework 2 Due 18 Sept 2019

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alter-
nately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Bouncing Ball

A ball is released from rest at height h and bounces off the floor with coefficient of restitution
e for each bounce. Treat its motion as entirely one-dimensional.

(a) KB 2.28 Show that the ball comes to rest on the floor at time

t =
1 + e

1− e

√
2h

g
(1)

(including the time before the first bounce).

(b) Find the total distance that the ball travels including the distance before the first bounce.

2. Falling Water inspired by FC 2.20

A spherical drop of water of radius r0 and uniform density ρ0 nucleates inside a cloud and falls
due to gravity, gathering mass from water vapor in the cloud and growing. As it falls for a
time dt, it collects the mass dm = ρ1πr

2vdt of the cylinder it sweeps out in the cloud, where r
and v are its radius and velocity as a function of time and ρ1 is the density of water vapor in
the cloud. Assume that the water drop keeps the same density and that ρ1 � ρ0.

(a) Show that ṙ = ρ1v/4ρ0 and find the equation of motion in terms of r, v, and the densities.
Assume that the drop is small enough that air resistance is negligible.

(b) Solve the EOM from part (a) for v(t) under the assumption that r(t) ∼ r0 is approximately
constant. Hint: you will find it useful to compare to assignment 1.

(c) Based on your solution to part (b), argue that the r(t) ∼ r0 approximation is self-consistent
for times t�

√
ρ0r0/ρ1g. Note that your solution to v(t) should be approximately linear

in time for these small times.

3. Harmonic Oscillator with Friction

Consider a harmonic oscillator with kinetic friction, rather than the damping we discussed in
class.

(a) Argue that Newton’s law can be written as

ẍ+
k

m
x+ µkgΘ(ẋ)− µkgΘ(−ẋ) = 0 , (2)

where Θ is the Heaviside step function, which is equal to 1 for positive argument and equal
to 0 otherwise.

(b) Solve (2) for the position of the oscillator numerically using Maple software. We will
choose time units in which m/k = 1, so the period of the oscillator without friction is 2π.
Start by choosing µkg = 0.01, take initial conditions x(0) = 1, ẋ(0) = 0, and plot your
solution, using the following code:



with(plots):

eqns := {(D[1, 1](x))(t)+x(t)+0.01*(Heaviside((D(x))(t))- Heaviside(-(D(x))(t)))

= 0, x(0) = 1, (D(x))(0) = 0};
soln:=dsolve(eqns,numeric,range=0..13)

odeplot(soln)

Then find solutions for the same initial conditions and µkg = 0.05, 0.1, 0.2. Finally, take
µkg = 0.05 and plot the solution for x(0) = 0.5 and 2. Attach a printout of your Maple
code and results.

(c) inspired by FC C3.5 Now suppose oscillating mass is on a moving belt of velocity +u, so
the friction force points opposite the relative velocity v−u. Redo your numerical solutions
of the previous part for µkg = 0.05, x(0) = 1, ẋ(0) = 0 and u = 0.5, 1, 2. Attach a printout
of your Maple code and results.

4. Damped Oscillators from Taylor

In this problem, consider a damped oscillator as discussed in the lecture notes.

(a) Show that the position of a critically damped or overdamped oscillator can never pass
through the equilibrium position x = 0 more than once (after having set initial conditions
at t = 0).

(b) The underdamped oscillator does in fact oscillate, but the solution is not a pure sine wave.
However, we can define the period as the time between successive maxima or as twice the
time between successive zeros of x(t). Show that either definition gives a period 2π/ω̄,

where ω̄ =
√
ω2
0 − γ2 as defined in the notes.

5. The Simple Pendulum Beyond Linearity

The simple pendulum of length l and mass m can be described by kinetic energy T = ml2θ̇2/2
and potential energy V = mgl(1− cos θ) = 2mgl sin2(θ/2) (the last follows from angle addition
formulae), where θ is the angle of the pendulum from downward. The pendulum is initially at
rest at a maximum angle θ0.

(a) Using conservation of energy, show that the time t and position θ are related by the integral

t =
1

2

√
l

g

∫ θ0

θ

dθ′√
sin2(θ0/2)− sin2(θ′/2)

(3)

as the pendulum falls from θ0 to θ = 0.

(b) Suppose θ0 � 1 as in the usual case. Expand the sine functions in (3) to lowest order and
carry out the integral to show that θ(t) = θ0 cos(

√
g/l t) as expected.

(c) Now consider the opposite limit with θ0 and θ both close to π (directly overhead) for
early times. Define θ = π − α, etc, and expand the integral to lowest order in terms of
α, α0. Carry out the integral using a hyperbolic trig substitution to show that the angular
displacement starts out growing exponentially.

(d) If we take θ = 0, the integral for the time gives one quarter of the full period of the
pendulum. Change integration variables to φ, where sinφ = sin(θ′/2)/ sin(θ0/2) to write
the period in terms of the complete elliptic integral of the first kind K(k), where k =
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sin(θ0/2) for us and

K(k) =

∫ π/2

0

dφ√
1− k2 sin2 φ

. (4)

(e) Having an answer in terms of a special function like the elliptic integral can be useful,
since a lot is known about many special functions. For example, software like Maple has
many functions available, so we could plot the period as a function of θ0. In this case, use
the first term of the asymptotic expansion (19.12.1) in the Digital Library of Mathematical
Functions (http://dlmf.nist.gov/) to show that the period grows like − ln(cos(θ0/2))
as θ0 → π. Note that k′ =

√
1− k2 in that formula, the Pochhammer symbol (1/2)m is 1

for m = 0, and the definition of d(0) is given below (19.12.3).
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