PHYS-3202 Homework 1 Due 11 Sept 2019

This homework is due in the dropbox outside 2 L 26 by $10: 59 \mathrm{PM}$ on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Conservation of Momentum inspired by Kibble \mathcal{F} Berkshire 1.1 and 1.2
(a) Object A moves initially with nonzero velocity \vec{v} and collides with initially stationary object B. After the collision, A moves with velocity $\vec{v} / 3$ and B moves with velocity $\vec{v} / 2$. What is the ratio of masses?
(b) The two stars of a double star system have concentric circular orbits of radii r_{1} and r_{2}. What is the ratio of their masses? Hint: The orbital speed v in a circular orbit of radius r is $v=r \omega$, where ω is the angular velocity.

2. Force From Velocity inspired by Fowles \& Cassiday

An object of mass m moves in one dimension with velocity given by $v=\alpha / x$ for α a positive constant. Find the force on the object as a function of position and the position as a function of time. To find the force, you may use either Newton's 2nd law or energy conservation. Assume that the object is initially at the origin.

3. Yield of Explosion from the 2018 CAP Lloyd G. Elliott University Prize Exam

An explosion releases an energy E into the atmosphere at time $t=0$. Use dimensional analysis to find the radius R of the resulting fireball as a function of time t. Relevant information is E and atmospheric density ρ. Note that the air pressure is related to ρ by the ideal gas law, so it is not a separate variable. (The formula you will find is valid at early times after the explosion.)

4. Turbulent Air Resistance

Consider an object falling in a uniform gravitational acceleration g against a drag force of magnitude λv^{2}. In this problem, you will want to recall the hyperbolic trig functions and the relationships $\cosh ^{2} \theta-\sinh ^{2} \theta=1, d \cosh \theta / d \theta=\sinh \theta$, and $d \sinh \theta / d \theta=\cosh \theta$.
(a) Show that the speed of the object as a function of time is

$$
\begin{equation*}
v(t)=\sqrt{\frac{m g}{\lambda}} \tanh \left(\sqrt{\frac{\lambda g}{m}} t\right) \tag{1}
\end{equation*}
$$

where m is the object's mass. Assume that $v=0$ at $t=0$. Does this formula agree with the terminal velocity from the lecture notes? Hint: You can directly integrate Newton's 2nd law.
(b) Now find the distance traveled as a function of time. Check that your answer has the correct units.

