Intermediate Mechanics PHYS-3202
 Final Exam

Dr. Andrew Frey

6 Dec 2019

Instructions:

- Do not turn over until instructed.
- You will have 3 hours to complete this exam.
- No electronic devices, hardcopy notes, or books are allowed.
- INSTRUCTIONS REGARDING TEST LENGTH WILL GO HERE.
- Answer all questions briefly and completely.
- Only the lined pages of your exam book will be graded. Use the blank pages for scratch work only.

Useful Formulae:

- Friction: $F_{\text {static }} \leq \mu_{S} N, F_{\text {kinetic }}=\mu_{K} N$ directed against opposing force or relative velocity
- Air/fluid resistance: $F=-\lambda v^{n-1} \vec{v}, \lambda \equiv m \gamma$
- Velocity is given with respect to air/fluid
- Terminal velocity in uniform gravity $v=(m g / \lambda)^{1 / n}$
- Solution in uniform gravity for linear air resistance

$$
x=\frac{v_{x, 0}}{\gamma}\left(1-e^{-\gamma t}\right), \quad z=\left(\frac{v_{z, 0}}{\gamma}+\frac{g}{\gamma^{2}}\right)\left(1-e^{-\gamma t}\right)-\frac{g t}{\gamma}
$$

- Solution for vertical motion in uniform gravity for quadratic air resistance

$$
v=-\sqrt{\frac{g}{\gamma}} \tanh (\sqrt{\gamma g} t), \quad z=z_{0}-\frac{1}{\gamma} \ln [\cosh (\sqrt{\gamma g} t)]
$$

with $z=z_{0}, v=0$ at $t=0, z$ increasing upward

- Thrust $-\dot{m} u$ for u exhaust speed, $v=v_{0}+u \ln \left(m_{0} / m\right)$
- Harmonic Oscillators
- Linear restoring force $F=-k x \equiv-m \omega_{0}^{2} x$, linear damping force $F=-\lambda \dot{x}=-2 m \gamma \dot{x}$
- Potential $V=k x^{2} / 2$
- Independent solutions $x=A e^{p t}$ where $p=-\gamma \pm \sqrt{\gamma^{2}-\omega_{0}^{2}}$
- For driving force $F(t)=F e^{i \omega t}$, solution is transients plus

$$
x(t)=A e^{i \omega t-i \theta}, \quad A=\frac{F / m}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \gamma^{2} \omega^{2}}}, \quad \tan \theta=\frac{2 \gamma \omega}{\omega_{0}^{2}-\omega^{2}}
$$

- Isotropic oscillator in 3D has restoring force $\vec{F}=-k \vec{r}$, potential $V=k r^{2} / 2$
- Can be anisotropic in 3D
- General 3D concepts
- Centripetal acceleration $a_{r}=-v^{2} / r$ for circular motion
- Angular momentum $\vec{J}=\vec{r} \times \vec{p}$, torque $\vec{\tau}=\vec{r} \times \vec{F}$
- Effective potential for central force $U=V+J^{2} / 2 m r^{2}$
- For a central force, motion is in a plane $\perp \vec{J}$
- For a central force, Kepler's second law $d A / d t=J / 2 m$ constant
- Inverse square force $\vec{F}=k \hat{r} / r^{2}, V=k / r$
- Coulomb $k=q_{1} q_{2} / 4 \pi \epsilon_{0}$, gravity $k=-G m_{1} m_{2}$
- Orbit $\ell=r(e \cos \phi \pm 1), \ell=J^{2} / m|k|, e=\sqrt{1+2 J^{2} E / m k^{2}}$
- Elliptical orbit: semimajor axis $a=\ell /\left(1-e^{2}\right)$, semiminor axis $b=\ell / \sqrt{1-e^{2}}$

Kepler's 3rd law $T^{2}=4 \pi^{2} a^{3} / G M$ for gravity

- Hyperbolic orbit $a=\ell /\left(e^{2}-1\right)$ with impact parameter $b=\ell / \sqrt{e^{2}-1}$
- Scattering
- Mean free path $\lambda=1 / n \sigma, n=$ number density, $\sigma=$ cross section
- Hard sphere scattering $b=R \cos (\theta / 2), d \sigma / d \Omega=R^{2} / 4$
- Rutherford scattering $b=\left(k / m v^{2}\right) \cot (\theta / 2), d \sigma / d \Omega=(1 / 4)\left(k / m v^{2}\right)^{2}\left(1 / \sin ^{4}(\theta / 2)\right)$
- Noninertial Frames with Accelerating Origin at \vec{R}
- General motion of origin: fictitious force $\vec{F}=-m d^{2} \vec{R} / d t^{2}$.
- Time derivative in inertial axes vs rotating axes $d \vec{a} / d t=\dot{\vec{a}}+\vec{\omega} \times \vec{a}$, angular velocity $\vec{\omega}$
- For \vec{R} rotating around same inertial origin:
* Transverse force $-m \dot{\vec{\omega}} \times(\vec{R}+\vec{r})$
* Centrifugal force $-m \vec{\omega} \times(\vec{\omega} \times(\vec{R}+\vec{r}))=m \omega^{2}(\vec{R}+\vec{r})-m \vec{\omega}(\vec{\omega} \cdot(\vec{R}+\vec{r}))$
* Coriolis force $-2 m \vec{\omega} \times \dot{\vec{r}}$
- Inertia Tensor
- Mass, center of mass position, inertia tensor ($d m=d^{3} \vec{r} \rho$)

$$
M=\int d m, \quad M \vec{R}=\int d m \vec{r}, \quad I_{i j}=\int d m\left(r^{2} \delta_{i j}-r_{i} r_{j}\right)
$$

- Moments of inertia are diagonal components, products off-diagonal $I_{z z}$ is around z axis, etc
- Principal axes and moments are eigenvectors and eigenvalues
- Parallel Axis Theorem $I_{i j}^{\prime}=I_{i j}^{C M}+M\left(R^{2} \delta_{i j}-R_{i} R_{j}\right), I_{i j}^{C M}$ is around center of mass
- Angular momentum $J_{i}=\sum_{j} I_{i j} \omega_{j}$, kinetic energy $T=\sum_{i j} I_{i j} \omega_{i} \omega_{j} / 2$
- Rigid Bodies
- Inertial axes $\hat{\imath}, \hat{\jmath}, \hat{k}$, body-fixed principal axes $\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$
- Rolling without slipping $v=\omega R$
- Euler equations in rotating body frame $\dot{\vec{J}}+\vec{\omega} \times \vec{J}=\vec{\tau}$; in principal axes:

$$
I_{1} \dot{\omega}_{1}+\left(I_{3}-I_{2}\right) \omega_{3} \omega_{2}=\tau_{1}, \quad I_{2} \dot{\omega}_{2}+\left(I_{1}-I_{3}\right) \omega_{3} \omega_{1}=\tau_{2}, \quad I_{3} \dot{\omega}_{3}+\left(I_{2}-I_{1}\right) \omega_{1} \omega_{2}=\tau_{3}
$$

- Euler angles
* Rotate by ϕ around \hat{k}
* Rotate by θ around line of nodes (\hat{x}) to define $\hat{x}, \hat{y}, \hat{z}$ axes
* Rotate by ψ around principal axis \hat{e}_{3}
* $\hat{x}, \hat{y}, \hat{z}$ axes rotate with angular velocity $\vec{\eta}=\dot{\theta} \hat{x}+\dot{\phi} \sin \theta \hat{y}+\dot{\phi} \cos \theta \hat{z}$
* Angular velocity

$$
\vec{\omega}=\vec{\eta}+\dot{\psi} \hat{z}=(\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi) \hat{e}_{1}+(\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi) \hat{e}_{2}+(\dot{\phi} \cos \theta+\dot{\psi}) \hat{e}_{3}
$$

- Symmetric object free rotation "wobble" rate $\dot{\phi}=I_{3} \omega_{3} / I \cos \theta$
- Effective potential for nutation of symmetric object in gravity

$$
V(\theta)=\frac{1}{2} \frac{\left(J_{k}-J_{z} \cos \theta\right)^{2}}{I \sin ^{2} \theta}+M g R \cos \theta
$$

- Astronomical data
- Earth latitude $\lambda=\pi / 2-\theta, \theta=$ polar angle, colatitude
$-\vec{g}$ defined by convention, you can use $g=G M_{\oplus} / R_{\oplus}^{2} \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Earth mass $M_{\oplus}=6.0 \times 10^{24} \mathrm{~kg}$, equatorial radius $R_{\oplus}=6400 \mathrm{~km}$
- Earth orbit semimajor axis $a_{\oplus}=1 \mathrm{au}=1.5 \times 10^{8} \mathrm{~km}$, period $T_{\oplus}=1 \mathrm{yr}=3.2 \times 10^{7} \mathrm{~s}$
- Solar mass $M_{\odot}=2.0 \times 10^{30} \mathrm{~kg}$, equatorial radius $R_{\odot}=7.0 \times 10^{8} \mathrm{~m}$
- Vector Calculus
- Triple products $(\vec{a} \times \vec{b}) \cdot \vec{c}=(\vec{b} \times \vec{c}) \cdot \vec{a}, \vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})$
- Gradient operator

$$
\vec{\nabla}=\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}
$$

Divergence $\vec{\nabla} \cdot \vec{A}$, Curl $\vec{\nabla} \times \vec{A}, \vec{\nabla} \times \vec{\nabla} f=0, \vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0$

- Cylindrical coordinates $x=\rho \cos \varphi, y=\rho \sin \varphi, z=z$

$$
d s^{2}=d \rho^{2}+\rho^{2} d \varphi^{2}+d z^{2}, \quad d^{3} \vec{r}=\rho d \rho d \varphi d z, \quad \vec{v}=\dot{\rho} \hat{\rho}+\rho \dot{\varphi} \hat{\varphi}+\dot{z} \hat{z}, \quad \vec{\nabla} f=\frac{\partial f}{\partial \rho} \hat{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \varphi} \hat{\varphi}+\frac{\partial f}{\partial z} \hat{z}
$$

- Spherical polar coordinates $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$

$$
\begin{gathered}
d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}, \quad d^{3} \vec{r}=r^{2} d r \sin \theta d \theta d \phi, \quad \vec{v}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}+r \sin \theta \dot{\phi} \hat{\phi} \\
\vec{\nabla} f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}
\end{gathered}
$$

- Other Math
- Ellipse and hyperbola in Cartesian coordinates (centered at origin)

$$
\frac{x^{2}}{a^{2}} \pm \frac{y^{2}}{b^{2}}=1
$$

semi-major axis a, semi-minor axis b

- Trigonometric identities

$$
\begin{gathered}
\cos ^{2} \theta+\sin ^{2} \theta=1, \quad \sin \alpha \cos \beta+\cos \alpha \sin \beta=\sin (\alpha+\beta), \quad \cos \alpha \cos \beta-\sin \alpha \sin \beta=\cos (\alpha+\beta) \\
d \sin \theta / d \theta=\cos \theta, \quad d \cos \theta / d \theta=-\sin \theta, \quad e^{i \theta}=\cos \theta+i \sin \theta
\end{gathered}
$$

- Matrix A, eigenvalues λ, eigenvectors $\vec{x}: A \vec{x}=\lambda \vec{x}$ Characteristic equation $\operatorname{det}(A-\lambda 1)=0$

