Intermediate Mechanics PHYS-3202 In-Class Test

Dr. Andrew Frey

21 Oct 2019

Instructions:

- Do not turn over until instructed.
- You will have 50 minutes to complete this test.
- No electronic devices or hardcopy notes are allowed.
- INSTRUCTIONS REGARDING TEST LENGTH WILL GO HERE.
- Answer all questions briefly and completely.
- Only the lined pages of your exam book will be graded. Use the blank pages for scratch work only.

Useful Formulae:

- Friction: $F_{\text {static }} \leq \mu_{S} N, F_{\text {kinetic }}=\mu_{K} N$ directed against opposing force or relative velocity
- Air/fluid resistance: $F=-\lambda v^{n-1} \vec{v}, \lambda \equiv m \gamma$
- Velocity is given with respect to air/fluid
- Terminal velocity in uniform gravity $v=(m g / \lambda)^{1 / n}$
- Solution in uniform gravity for linear air resistance

$$
x=\frac{v_{x, 0}}{\gamma}\left(1-e^{-\gamma t}\right), \quad z=\left(\frac{v_{z, 0}}{\gamma}+\frac{g}{\gamma^{2}}\right)\left(1-e^{-\gamma t}\right)-\frac{g t}{\gamma}
$$

- Solution for vertical motion in uniform gravity for quadratic air resistance

$$
v=-\sqrt{\frac{g}{\gamma}} \tanh (\sqrt{\gamma g} t), \quad z=z_{0}-\frac{1}{\gamma} \ln [\cosh (\sqrt{\gamma g} t)]
$$

with $z=z_{0}, v=0$ at $t=0, z$ increasing upward

- Thrust $-\dot{m} u$ for u exhaust speed, $v=v_{0}+u \ln \left(m_{0} / m\right)$
- Harmonic Oscillators
- Linear restoring force $F=-k x \equiv-m \omega_{0}^{2} x$, linear damping force $F=-\lambda \dot{x}=-2 m \gamma \dot{x}$
- Potential $V=k x^{2} / 2$
- Independent solutions $x=A e^{p t}$ where $p=-\gamma \pm \sqrt{\gamma^{2}-\omega_{0}^{2}}$
- For driving force $F(t)=F e^{i \omega t}$, solution is transients plus

$$
x(t)=A e^{i \omega t-i \theta}, \quad A=\frac{F / m}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \gamma^{2} \omega^{2}}}, \quad \tan \theta=\frac{2 \gamma \omega}{\omega_{0}^{2}-\omega^{2}}
$$

- Isotropic oscillator in 3D has restoring force $\vec{F}=-k \vec{r}$, potential $V=k r^{2} / 2$
- Can be anisotropic in 3D
- General 3D concepts
- Centripetal acceleration $a_{r}=-v^{2} / r$ for circular motion
- Angular momentum $\vec{J}=\vec{r} \times \vec{p}$, torque $\vec{\tau}=\vec{r} \times \vec{F}$
- Effective potential for central force $U=V+J^{2} / 2 m r^{2}$
- For a central force, motion is in a plane $\perp \vec{J}$
- For a central force, Kepler's second law $d A / d t=J / 2 m$ constant
- Inverse square force $\vec{F}=k \hat{r} / r^{2}, V=k / r$
- Coulomb $k=q_{1} q_{2} / 4 \pi \epsilon_{0}$, gravity $k=-G m_{1} m_{2}$
- Orbit $\ell=r(e \cos \phi \pm 1), \ell=J^{2} / m|k|, e=\sqrt{1+2 J^{2} E / m k^{2}}$
- Elliptical orbit: semimajor axis $a=\ell /\left(1-e^{2}\right)$, semiminor axis $b=\ell / \sqrt{1-e^{2}}$

Kepler's 3rd law $T^{2}=4 \pi^{2} a^{3} / G M$ for gravity

- Hyperbolic orbit $a=\ell /\left(e^{2}-1\right)$ with impact parameter $b=\ell / \sqrt{e^{2}-1}$
- Scattering
- Mean free path $\lambda=1 / n \sigma, n=$ number density, $\sigma=$ cross section
- Hard sphere scattering $b=R \cos (\theta / 2), d \sigma / d \Omega=R^{2} / 4$
- Rutherford scattering $b=\left(k / m v^{2}\right) \cot (\theta / 2), d \sigma / d \Omega=(1 / 4)\left(k / m v^{2}\right)^{2}\left(1 / \sin ^{4}(\theta / 2)\right)$
- Vector Calculus
- Triple products $(\vec{a} \times \vec{b}) \cdot \vec{c}=(\vec{b} \times \vec{c}) \cdot \vec{a}, \vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})$
- Gradient operator

$$
\vec{\nabla}=\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}
$$

Divergence $\vec{\nabla} \cdot \vec{A}$, Curl $\vec{\nabla} \times \vec{A}, \vec{\nabla} \times \vec{\nabla} f=0, \vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0$

- Cylindrical coordinates $x=\rho \cos \varphi, y=\rho \sin \varphi, z=z$

$$
d s^{2}=d \rho^{2}+\rho^{2} d \varphi^{2}+d z^{2}, \quad d^{3} \vec{r}=\rho d \rho d \varphi d z, \quad \vec{v}=\dot{\rho} \hat{\rho}+\rho \dot{\varphi} \hat{\varphi}+\dot{z} \hat{z}, \quad \vec{\nabla} f=\frac{\partial f}{\partial \rho} \hat{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \varphi} \hat{\varphi}+\frac{\partial f}{\partial z} \hat{z}
$$

- Spherical polar coordinates $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$

$$
\begin{gathered}
d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}, \quad d^{3} \vec{r}=r^{2} d r \sin \theta d \theta d \phi, \quad \vec{v}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}+r \sin \theta \dot{\phi} \hat{\phi} \\
\vec{\nabla} f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}
\end{gathered}
$$

- Ellipse and hyperbola in Cartesian coordinates (centered at origin)

$$
\frac{x^{2}}{a^{2}} \pm \frac{y^{2}}{b^{2}}=1
$$

semi-major axis a, semi-minor axis b

