PHYS-4602 Homework 9 Due 6 April 2020

This homework is due 11PM on the due date. You may email a PDF (typed, scanned, or photographed) to Dr. Frey.

1. Quadratic Well

Consider a particle moving in the potential

$$
V(x)=\left\{\begin{array}{cc}
\infty & x<0 \tag{1}\\
\left(m \omega^{2} / 2\right)\left(x^{2}-a^{2}\right) & 0<x<a \\
0 & x>a
\end{array}\right.
$$

(shown in the figure on the right).
(a) Use the WKB approximation to estimate the bound state $(E<0)$ energies.
(b) Write down the WKB wavefunction for a scattering state $E>0$.
2. Uniform Gravitational Field parts of Griffiths 8.5 and 8.6

Consider a ball of mass m that feels a uniform gravitational acceleration g in the $-x$ direction, as by the surface of the earth. Assume that the surface of the earth is at $x=0$ and forms an infinite potential barrier.
(a) First, write down what the potential energy is as a function of x.
(b) Use the WKB approximation to find the allowed energies of the bouncing ball. Find the approximate ground state and first excited state energies in Joules to two significant digits for a neutron (mass $m=1.7 \times 10^{-27} \mathrm{~kg}$). This can actually be measured for ultracold neutrons.
(c) The exact solution of the Schrödinger equation is given by the Airy function

$$
\begin{equation*}
\psi(x)=C \operatorname{Ai}\left[\left(\frac{2 m^{2} g}{\hbar^{2}}\right)^{1 / 3}\left(x-\frac{E}{m g}\right)\right] \tag{2}
\end{equation*}
$$

where C is a normalization constant and E is quantized so $\psi(0)=0$. Denote the zeros of $\operatorname{Ai}(z)$ by $a_{k}\left(k=1,2, \cdots\right.$ with $\left.\left|a_{1}\right|<\left|a_{2}\right|<\cdots\right)$ and find the energy eigenvalues in terms of the a_{k}. What are the ground and first excited state energies for a neutron? You will need to look up values of a_{k} at the Digital Library of Mathematical Functions (DLMF) at http://dlmf.nist.gov/9.9.
(d) Show that the energy eigenvalues match the WKB result in the limit of large quantum number. Hint: You can use the asymptotic form of the Airy function itself (either in Griffiths or in the DLMF) or that of the zeros (from the DLMF).
3. Ionizing an Atom from Griffiths 8.16

Imagine a hydrogen atom in a small electric field; the electron feels a linear potential from the field, which eventually becomes less than the ground state energy, so it can tunnel out of the
atom. In this problem, consider a simple 1D model of this system, with potential

$$
V(x)=\left\{\begin{array}{cc}
\infty, & x<-a \tag{3}\\
-V_{0}, & -a<x<0 . \\
-\alpha x, & x>0
\end{array} .\right.
$$

(a) Suppose the square well is very deep, so $V_{0} \gg \hbar^{2} / m a^{2}$. In the absence of the electric field $(\alpha=0)$, what is the approximate ground state energy E ? If the electron were a classical particle with this kinetic energy, what would be its speed? Hint: You can think of this as the energy of the first odd eigenfunction of a finite square well of width $2 a$ or you can approximate the potential as nearly an infinite square well.
(b) Show that the lifetime of the atom in the presence of the field is $\ln \tau=A|E|^{3 / 2}+B$, where A and B are constants. Then find A and B (you may need your results from part (a)).

