PHYS-4602 Homework 7 Due 12 March 2020

This homework is due in the dropbox outside 2 L 26 by $10: 59 \mathrm{PM}$ on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Matrix Perturbation Theory

Consider the matrix Hamiltonian

$$
H \simeq\left[\begin{array}{cc}
E_{1} & \epsilon \tag{1}\\
\epsilon & E_{2}
\end{array}\right]
$$

with $E_{1} \neq E_{2}$ except when you are told otherwise. Assume that $\epsilon \ll E_{1}, E_{2}$.
(a) To first order in perturbation theory, find the energy eigenvalues and eigenstates.
(b) What is the first order correction to the energy if $E_{1}=E_{2}=E$?
(c) Find the energy eigenvalues to second order in perturbation theory.
(d) Find the energy eigenvalues and eigenstates exactly. Then expand them as a power series in ϵ and compare to your perturbative answers from parts (ac). In the case that $E_{1}=$ $E_{2}=E$, how does your answer compare to part (b)?

2. Sharp Kick

Consider a particle initially in the ground state of a 1D infinite square well with potential

$$
V(x)=\left\{\begin{array}{cc}
0 & 0<x<a \tag{2}\\
\infty & \text { otherwise }
\end{array} .\right.
$$

At time $t=0$, the particle receives a kick in the form of a time-dependent potential $\alpha \cos (\pi x / a) \delta(t)$ for small α. What is the probability that the particle is in the first excited state after $t=0$?

3. Exciting a 3D Harmonic Oscillator

Consider an electron moving in a 3D harmonic oscillator potential with Hamiltonian

$$
\begin{equation*}
H_{0}=\frac{\vec{p}^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} \vec{r}^{2} . \tag{3}
\end{equation*}
$$

Starting at time $t=0$, the electron is exposed to a weak electromagnetic wave moving along z and polarized along x, which introduces a term $H_{1}(t)=\left(E_{0} / \omega\right) p_{x} \exp (i k z-i \omega t)$ (plus complex conjugate) to the Hamiltonian. The wavelength is long, so you can approximate that $k z \ll 1$. Recall that the eigenstates of H_{0} can be written in terms of x, y, z excitation numbers as $\left|n_{x}, n_{y}, n_{z}\right\rangle$ with energies $\hbar \omega_{0}\left(n_{x}+n_{y}+n_{z}-3 / 2\right)$.
(a) Let P_{n} be the probability that an electron initially in harmonic oscillator state $|n, 0,0\rangle$ transitions to state $|n+1,0,0\rangle$ at time T. Find the ratio P_{n} / P_{0}. You may approximate that the EM wave is spatially uniform.
(b) In the approximation that the EM wave is spatially uniform, the excitation from $|0,0,0\rangle$ to $|1,0,1\rangle$ is forbidden (the transition probability vanishes). Using instead the approximation that $\exp (i k z) \sim(1+i k z)$, find the probability of that transition at time T.

