PHYS-4602 Homework 5 Due 27 Feb 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Dirac Notation on the Circle

Consider the Hilbert space of L^{2} functions on the interval $0 \leq x \leq 2 \pi R$ with periodic boundary conditions.
(a) Show explicitly that the complex exponentials $\left|e_{n}\right\rangle \simeq e^{i n x / R} / \sqrt{2 \pi R}$ for n any integer form an orthonormal set (as we stated in class). As it turns out, they make a complete orthonormal basis (but you do not have to prove that).

Carry out the following calculations without doing any integrals.
(b) Calculate the inner product of $|f\rangle \simeq f(x)=\cos ^{3}(x / R)$ and $|g\rangle \simeq g(x)=\sin (3 x / R)$.
(c) Find the inner product of $|f\rangle$ and $|g\rangle$ from part (b) with $|h\rangle \simeq h(x)=\sin (3 x / R+\theta)$.
(d) $|f\rangle,|g\rangle,|h\rangle$ are not normalized. Find their norms.

2. Gaussian Wavepacket

Here we consider the Gaussian wavepacket in 1D at a single instant $t=0$, ignoring its time evolution. The state is

$$
\begin{equation*}
|\psi\rangle=\int_{-\infty}^{\infty} d x A e^{-a x^{2}}|x\rangle \tag{1}
\end{equation*}
$$

Some of these results may be useful on future assignments.
(a) Find the normalization constant A. Hint: To integrate a Gaussian, consider its square. When you square it, change the dummy integration variable to y, then change the integral over $d x d y$ to plane polar coordinates. The textbook cover also has a formula for Gaussian integrals.
(b) Since the wavefunction is even, $\langle x\rangle=0$. Find $\left\langle x^{2}\right\rangle$. Hint: You can get a factor of x^{2} next to the Gaussian by differentiating it with respect to the parameter a.
(c) Write $|\psi\rangle$ in the momentum basis. Hint: If you have a quantity $a x^{2}+b x$ somewhere, you may find it useful to write it as $a(x+b / 2 a)^{2}-b^{2} / 4 a$ by completing the square. Then shift integration variables so it looks like you have a Gaussian again.
(d) Find $\langle p\rangle$ and $\left\langle p^{2}\right\rangle$ and show that this state saturates the Heisenberg uncertainty principle. You should not have to do any integrations.

3. Harmonic Oscillator Matrix Elements

(a) Calculate the matrix elements $\langle n| x\left|n^{\prime}\right\rangle$ and $\langle n| p^{2}\left|n^{\prime}\right\rangle$ for $|n\rangle,\left|n^{\prime}\right\rangle$ stationary states of the harmonic oscillator. You must use Dirac and operator notation and may not carry out any integrals.
(b) Suppose the system is in the state $|\psi\rangle=\left(|0\rangle+2 e^{i \theta}|1\rangle\right) / \sqrt{5}$. Using your previous result, find $\langle x\rangle$ as a function of θ and explain the relation of your answer to the time evolution of a particle initially in that state with $\theta=0$.
(c) from a Griffiths problem A coherent state $|\alpha\rangle$ of a harmonic oscillator is an eigenstate of the lowering operator

$$
\begin{equation*}
a|\alpha\rangle=\alpha|\alpha\rangle, \tag{2}
\end{equation*}
$$

where the eigenvalue α is complex in general ($a \neq a^{\dagger}$ is not Hermitian). Find the expectation values of x and p in the coherent state $|\alpha\rangle$.

4. Former Test Question 1

Two Hermitian operators A and B have simultaneous eigenstates denoted $|a, b\rangle$, where a is the eigenvalue of A and b is the eigenvalue of B. Answer the following questions as True or False. Explain your reasoning in one sentence per part.
(a) The state $\left(\left|a_{1}, b\right\rangle+\left|a_{2}, b\right\rangle\right) / \sqrt{2}$ with $a_{1} \neq a_{2}$ is an eigenstate of A.
(b) The state $\left(\left|a_{1}, b\right\rangle+\left|a_{2}, b\right\rangle\right) / \sqrt{2}$ with $a_{1} \neq a_{2}$ is an eigenstate of B.
(c) The vector $\left(\left|a_{1}, b\right\rangle+4\left|a_{2}, b\right\rangle\right) / 3$ is correctly normalized.

5. Former Test Question 2

Some operator Q commutes with the Hamiltonian. If the initial state $|\Psi(t=0)\rangle$ of the system is an eigenstate of Q with eigenvalue q, prove that $|\Psi(t)\rangle$ is also an eigenstate of Q with the same eigenvalue for any time t.

6. Former Test Question 3

Answer the following about 1-qbit and 2-qbit gates.
(a) Show that acting with \mathbb{H}, then $R(\pi)$, then \mathbb{H} again reproduces the $N O T$ gate (meaning NOT is not an independent gate).
(b) It is not possible to clone a qbit, but is it possible for a unitary gate $\left(U^{\dagger}=U^{-1}\right)$ to swap two qbits? That is, does there exist U such that $U\left(|\psi\rangle_{1}|\phi\rangle_{2}\right)=|\phi\rangle_{1}|\psi\rangle_{2}$ for two unknown qbits? Hint: choose a basis for the 2-qbit Hilbert space and write U as a matrix.

