PHYS-4602 Homework 3 Due 30 Jan 2020

This homework is due in the dropbox outside 2 L 26 by $10: 59 \mathrm{PM}$ on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Commutators and Functions of Operators

(a) Suppose $|a\rangle$ is an eigenfunction of some operator $A, A|a\rangle=a|a\rangle$. Consider the inverse operator A^{-1} defined such that $A A^{-1}=A^{-1} A=1$. Show that $|a\rangle$ is an eigenvector of A^{-1} with eigenvalue $1 / a$ if $a \neq 0$ (if there is an eigenvalue $=0, A$ is not invertible).
(b) For any function $f(x)$ that can be written as a power series

$$
\begin{equation*}
f(x)=\sum_{n} f_{n} x^{n}, \tag{1}
\end{equation*}
$$

we can define

$$
\begin{equation*}
f(A)=\sum_{n} f_{n} A^{n} \tag{2}
\end{equation*}
$$

where A^{n} denotes operating with $A n$ times. Show that

$$
\begin{equation*}
f(A)|a\rangle=f(a)|a\rangle . \tag{3}
\end{equation*}
$$

Does this result hold if the power series includes negative powers?
(c) For any three operators A, B, C, show that

$$
\begin{equation*}
[A, B C]=[A, B] C+B[A, C] . \tag{4}
\end{equation*}
$$

(d) Then prove by induction that

$$
\begin{equation*}
\left[A, B^{n}\right]=n[A, B] B^{n-1} \tag{5}
\end{equation*}
$$

if $[A, B]$ commutes with B (for $n>0)$.
(e) Finally, show using (5) that $[p, f(x)]=-i \hbar d f / d x$, where x and p are 1D position and momentum operators with $[p, x]=-i \hbar$. Assume $f(x)$ can be written as a Taylor series.
2. Measurement vs Time Evolution a considerable expansion of Griffiths 3.27

Suppose a system has observable A with eigenstates $\left|a_{1}\right\rangle,\left|a_{2}\right\rangle$ of eigenvalues a_{1}, a_{2} respectively and Hamiltonian H with eigenstates $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle$ of energies E_{1}, E_{2} respectively. The eigenstates are related by

$$
\begin{equation*}
\left|a_{1}\right\rangle=\frac{1}{5}\left(3\left|E_{1}\right\rangle+4\left|E_{2}\right\rangle\right), \quad\left|a_{2}\right\rangle=\frac{1}{5}\left(4\left|E_{1}\right\rangle-3\left|E_{2}\right\rangle\right) . \tag{6}
\end{equation*}
$$

Suppose the system is measured to have value a_{1} for A initially. Each of the following parts asks about a different possible set of subsequent measurements.
(a) What is the probability of measuring energy E_{1} immediately after the first measurement? Assuming we do get E_{1}, what is the probability of measuring a_{1} again if we measure A again immediately after the measurement of energy?
(b) Instead, consider immediately measuring A again after the first measurement. What are the probabilities for observing a_{1} and a_{2} ?
(c) Finally, consider making the first measurement and then allowing the system to evolve for time t. If we then measure energy, what is the probability of finding energy E_{1} ? If we instead measured A again, what is the probability we find a_{1} again?

3. Matrix Hamiltonian

Consider a 3D Hilbert space with Hamiltonian

$$
H \simeq E_{0}\left[\begin{array}{ccc}
0 & 0 & i \tag{7}\\
0 & 1 & 0 \\
-i & 0 & 0
\end{array}\right]
$$

in some basis. Work in this basis throughout the problem.
(a) Show that the time evolution operator is

$$
e^{-i H t / \hbar} \simeq \cos \left(E_{0} t / \hbar\right)\left[\begin{array}{lll}
1 & 0 & 0 \tag{8}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-i \sin \left(E_{0} t / \hbar\right)\left[\begin{array}{ccc}
0 & 0 & i \\
0 & 1 & 0 \\
-i & 0 & 0
\end{array}\right]
$$

in this basis.
(b) Some operator A is defined in this basis as

$$
A \simeq A_{0}\left[\begin{array}{ccc}
2 & 0 & 0 \tag{9}\\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Suppose the system starts out at time $t=0$ in a state represented by $\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$. Using your previous result, find the state of the system and $\langle A\rangle$ as a function of time. At what times is $\langle A\rangle$ minimized?

