PHYS-4602 Homework 2 Due 23 Jan 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. The Last Eigenvector

A system with a three-dimensional Hilbert space has Hamiltonian represented by the matrix

$$
H \simeq \frac{E_{0}}{3}\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 2 i \tag{1}\\
-1 / 2 & 1 / 2 & -2 i \\
-2 i & 2 i & -1
\end{array}\right]
$$

Two of the eigenstates are represented by the column vectors

$$
|1\rangle \simeq \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \tag{2}\\
1 \\
0
\end{array}\right] \text { and }|2\rangle \simeq \frac{1}{\sqrt{3}}\left[\begin{array}{c}
i \\
-i \\
1
\end{array}\right]
$$

(a) Find the third eigenstate $|3\rangle$ as a column vector, including proper normalization. Use only relations between the eigenvectors, not the action of H on them.
(b) Find all the eigenvalues of H and write H as a matrix in the $\{|1\rangle,|2\rangle,|3\rangle\}$ basis.
(c) The operator $|3\rangle\langle 3|$ projects any vector $|\psi\rangle$ onto its component in the $|3\rangle$ direction. Write $|3\rangle\langle 3|$ as a matrix in the original basis.

2. Expectation and Uncertainty

Consider an observable L with three eigenvalues $+1,0$, and -1 and corresponding eigenstates $|+1\rangle,|0\rangle,|-1\rangle$. We have a system in state

$$
\begin{equation*}
|\psi\rangle=\frac{1}{3}\left(|+1\rangle+2 e^{i \beta}|0\rangle+2|-1\rangle\right) . \tag{3}
\end{equation*}
$$

(a) What is the probability of measuring each of the three eigenvalues of L ?
(b) Find the expectation value and uncertainty of a measurement of L.
(c) Another observable A acts on the L eigenbasis as

$$
\begin{equation*}
A|+1\rangle=\frac{1}{\sqrt{2}}|0\rangle, \quad A|0\rangle=\frac{1}{\sqrt{2}}(|+1\rangle+|-1\rangle), \quad A|-1\rangle=\frac{1}{\sqrt{2}}|0\rangle . \tag{4}
\end{equation*}
$$

Find the expectation value and uncertainty of A in state $|\psi\rangle$.
(d) Finally, show that the uncertainties of L and A satisfy the uncertainty principle in this state.

3. Quantum Reality or Not

To answer this question, you will need to watch the video of Sidney Coleman's famous lecture "Quantum Mechanics In Your Face" at http://media.physics.harvard.edu/video/ ?id=SidneyColeman_QMIYF or https://www.youtube.com/watch?v=EtyNM1XN-sw . (This is about an hour and supplements the reading, which is not long this week.)
(a) The Bell experiment considers 2 distinguishable spin $1 / 2$ particles in the singlet $(s=0)$ total spin state. If \hat{a} and \hat{b} are two unit vectors, show that

$$
\begin{equation*}
\left\langle\left(\hat{a} \cdot \vec{S}^{(1)}\right)\left(\hat{b} \cdot \vec{S}^{(2)}\right)\right\rangle=-\frac{\hbar^{2}}{4} \hat{a} \cdot \hat{b} . \tag{5}
\end{equation*}
$$

Hint: Think about a convenient choice of axes and remember that the spin operators are given in matrix form as $S_{i} \simeq(\hbar / 2) \sigma_{i}$ in terms of the Pauli matrices.
(b) Three electrons are prepared in the so-called "GHZM" spin state $|\psi\rangle=\left(|+\rangle_{1}|+\rangle_{2}|+\rangle_{3}-\right.$
 $S_{x}^{(1)} S_{y}^{(2)} S_{y}^{(3)}$ and find the eigenvalue.

