PHYS-4602 Homework 1 Due 16 Jan 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Dual Vectors and Change of Basis

Consider a 3-dimensional complex column vector space, which has the usual orthonormal basis

$$
\left|e_{1}\right\rangle \simeq\left[\begin{array}{l}
1 \tag{1}\\
0 \\
0
\end{array}\right],\left|e_{2}\right\rangle \simeq\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left|e_{3}\right\rangle \simeq\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

In that basis, the vectors $\left|f_{i}\right\rangle(i=1,2,3)$ can be written as

$$
\left|f_{1}\right\rangle \simeq \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \tag{2}\\
1 \\
0
\end{array}\right],\left|f_{2}\right\rangle \simeq \frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left|f_{3}\right\rangle \simeq \frac{1}{\sqrt{6}}\left[\begin{array}{c}
i \\
-i \\
-2 i
\end{array}\right]
$$

(a) Write the $\left|f_{i}\right\rangle$ as linear superpositions of the $\left|e_{i}\right\rangle$ basis vectors.
(b) Show that the $\left|f_{i}\right\rangle$ are normalized and mutually orthogonal, so they form a complete orthonormal basis (distinct from the set of $\left|e_{i}\right\rangle$).
(c) Write the associated dual vectors $\left\langle f_{i}\right|$ as row vectors in the $\left\{\left\langle e_{i}\right|\right\}$ basis.
(d) Write the $\left|e_{i}\right\rangle$ vectors as linear superpositions of the $\left|f_{i}\right\rangle$. Use your result to do a change of basis for this Hilbert space by writing the $\left|e_{i}\right\rangle$ vectors as column vectors in the $\left\{\left|f_{i}\right\rangle\right\}$ basis. Hint: You can solve a system of linear equations or use a similarity transformation, but it is much easier if you use inner products as discussed in the notes.

2. Superposition of States

Suppose $|\psi\rangle$ and $|\phi\rangle$ are two normalized state vectors, and so is $|\alpha\rangle=A(3|\psi\rangle+4|\phi\rangle)$.
(a) Find the normalization constant A in the case that
i. $\langle\psi \mid \phi\rangle=0$.
ii. $\langle\psi \mid \phi\rangle=i$.
iii. $\langle\psi \mid \phi\rangle=e^{i \pi / 6}$.
(b) In the case $\langle\psi \mid \phi\rangle=i$, find the part of $|\alpha\rangle$ orthogonal to $|\psi\rangle$. Verify that it is orthogonal by taking the inner product. You may use the Gram-Schmidt procedure described in Griffiths problem A. 4 to
(c) Now suppose that $\langle\psi \mid \phi\rangle=0$ and define a new state $|\beta\rangle=B\left(4 e^{-i \theta}|\psi\rangle+3 e^{i \theta}|\phi\rangle\right)$ for some angle θ. Find the normalization constant B and $\langle\alpha \mid \beta\rangle$ (you make assume that the normalization constants are positive and real).
3. 1-Qbit Density Matrix inspiration from Griffiths \& Schroeter 12.6 E 12.8

Consider the density matrix ρ for a single qbit (you may consider this to be the spin of a single spin- $1 / 2$ particle instead). In this problem, describe ρ as a matrix rather than an abstract operator.
(a) Prove that $\rho^{2}=\rho$ if and only if the state is pure. Hint: Think about the diagonal form of ρ in pure and mixed states.
(b) Using the requirements that $\operatorname{Tr}(\rho)=1$ and $\rho^{\dagger}=\rho$, show that the most general density matrix for a single qbit is

$$
\rho=\frac{1}{2}\left[\begin{array}{cc}
\left(1+a_{3}\right) & \left(a_{1}-i a_{2}\right) \tag{3}\\
\left(a_{1}+i a_{2}\right) & \left(1-a_{3}\right)
\end{array}\right],
$$

where $a_{1,2,3}$ are real numbers. (This can also be written in terms of the Pauli sigma matrices as $(1+\vec{a} \cdot \vec{\sigma}) / 2$.)
(c) Define the Bloch vector \vec{a} as the vector with components $a_{1,2,3}$. Use part (a) to show that ρ represents a pure state if $|\vec{a}|=1$ and a mixed state if $|\vec{a}|<1$ (that is, the Bloch vector lies on the surface of the Bloch sphere for a pure state and inside the Bloch sphere for a mixed state).
(d) Find the quantum von Neumann entropy for $a_{1}=1 / 2, a_{2}=0$, and $a_{3}=0$. Hint: you may want to diagonalize ρ first.

