PHYS-3203 Homework 8 Due 18 Mar 2020

This homework is due in the dropbox outside 2L26 by 10:59PM on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Exploding Cannonball inspired by a problem by Barton (and other texts)

A cannonball is launched in an arc with velocity \vec{u}. At the top of its trajectory, a chemical charge in it explodes into two parts of masses m_{1} and m_{2} that separate in the horizontal direction only. The explosion releases energy E, which essentially all goes into the kinetic energy of the cannonball pieces. Show that they are separated by a distance $\left(u_{y} / g\right) \sqrt{2 E\left(m_{1}+m_{2}\right) / m_{1} m_{2}}$ when they land, where u_{y} is the initial vertical component of the velocity.
2. Lagrange Points related to $K B 10.15 \& 16$

Consider the restricted 3 -body problem as described in the class notes. If the radius of the primary-secondary orbit is a, the frequency of the orbit is $\omega=\sqrt{G\left(m_{1}+m_{2}\right) / a^{3}}$ for primary and secondary masses m_{1}, m_{2}. The distances of the primary and secondary from their center of mass are $a_{1}=m_{2} a /\left(m_{1}+m_{2}\right)$ and $a_{2}=m_{1} a /\left(m_{1}+m_{2}\right)$ respectively. Work in an accelerating reference frame that rotates with the primary and secondary (ie, they are at fixed positions). Assume all motion is in the $x y$ plane.
(a) In this frame, the force on a tertiary of mass m_{3} moving in the same plane is

$$
\begin{equation*}
\vec{F}=-G m_{3}\left(\frac{m_{1}}{r_{1}^{3}} \vec{r}_{1}+\frac{m_{2}}{r_{2}^{3}} \vec{r}_{2}\right)+m_{3} \omega^{2} \vec{r}-2 m_{3} \vec{\omega} \times \dot{\vec{r}} . \tag{1}
\end{equation*}
$$

where \vec{r} is the position of the tertiary and $\vec{r}_{1} \equiv \vec{r}-a_{1} \hat{x}, \vec{r}_{2} \equiv \vec{r}+a_{2} \hat{x}$. Find the effective potential for a stationary tertiary (ie, corresponding to all terms in the force except for the Coriolis force). Write your answer in terms of the masses and primary-secondary orbit radius.
(b) Sketch the effective potential for tertiary positions on the x axis for the cases $m_{1}=m_{2}$ and $m_{1} \gg m_{2}$. In both cases, use your sketch to argue that there are (unstable) equilibrium points between the primary and secondary as well as outside each of them.

3. Boosts and Rotations

In matrix form, we can define the boost $\Lambda_{t x}$ along x and the rotation $\Lambda_{x y}$ in the $x y$ plane (around the z axis) as follows:

$$
\Lambda_{t x}(\phi)=\left[\begin{array}{cccc}
\cosh \phi & -\sinh \phi & & \tag{2}\\
-\sinh \phi & \cosh \phi & & \\
& & 1 & \\
& & & 1
\end{array}\right], \quad \Lambda_{x y}(\theta)=\left[\begin{array}{cccc}
1 & & & \\
& \cos \theta & \sin \theta & \\
& -\sin \theta & \cos \theta & \\
& & & 1
\end{array}\right]
$$

Empty elements in the matrices above are zero.
(a) In matrix form, the metric $\eta_{\mu \nu}$ is

$$
\eta=\left[\begin{array}{cccc}
-1 & & & \tag{3}\\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]
$$

Show that both rotation and boost in (2) satisfy the condition $\eta_{\mu \nu}=\Lambda^{\alpha}{ }_{\mu} \Lambda^{\beta}{ }_{\nu} \eta_{\alpha \beta}$, which is $\eta=\Lambda^{T} \eta \Lambda$ in matrix notation.
(b) Consider two successive boosts along $x, \Lambda_{t x}\left(\phi_{1}\right)$ and $\Lambda_{t x}\left(\phi_{2}\right)$. Show that these multiply to give a third boost $\Lambda_{t x}\left(\phi_{3}\right)$ and find ϕ_{3}. Using the relationship $v / c=\tanh \phi$ between velocity and rapidity ϕ, reproduce the velocity addition rule. Hint: You will need the angle-addition rules for hyperbolic trig functions.
(c) First, write down the Lorentz transformation matrix $\Lambda_{t y}(\phi)$ corresponding to a boost along the y direction by permuting axes. Then show that you can get a boost along y by rotating axes, boosting along x, then rotating back by proving that $\Lambda_{t y}(\phi)=$ $\Lambda_{x y}(-\pi / 2) \Lambda_{t x}(\phi) \Lambda_{x y}(\pi / 2)$.

