PHYS-3203 Homework 4 Due 5 Feb 2020

This homework is due in the dropbox outside 2 L 26 by $10: 59 \mathrm{PM}$ on the due date. You may alternately email a PDF (typed or black-and-white scanned) or give a hardcopy to Dr. Frey.

1. Hamiltonian Central Force Motion expanded from KB12.4

Consider an object of mass m moving in 3D with a central conservative force of potential energy $V(r)$.
(a) Write the Hamiltonian for this object in spherical polar coordinates.
(b) You should see that the azimuthal angle ϕ is cyclic. Assuming motion is confined to the equatorial plane, find the effective potential for radial motion. Find the transformation of the Cartesian coordinates generated by p_{ϕ}. Use both these results to argue that $p_{\phi}=J_{z}$, the z component of angular momentum.
(c) Define the square angular momentum

$$
\begin{equation*}
\vec{J}^{2}=m^{2} r^{4}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right) . \tag{1}
\end{equation*}
$$

Write \vec{J}^{2} in terms of canonical momenta and show that it is conserved, even though θ is not cyclic.

2. Liouville Theorem in Particle Accelerators from TM

Consider a linear accelerator, which accelerates bunches of electrons along the z axis. The beam initially has a circular cross section of radius R in the $x y$ plane with uniform electron density across the circle. The transverse momenta p_{x}, p_{y} are likewise distributed uniformly over a circle of radius P centered on the origin of momentum space. As they move down the accelerator, some mechanism focuses the beam onto a transverse circle in the $x y$ plane of half the initial radius. What is the resulting distribution of p_{x}, p_{y}, and what does this mean for the electron beam? Hint: The z motion is decoupled from the motion in the $x y$ plane, so you can focus only on the distribution in $x y$ phase space.
3. Bead on Hoop from KB 11.7 \& 8, also TM

A thin circular hoop of radius R and mass M hangs from a point on its rim (as a pendulum). Meanwhile, a bead of mass m slides frictionlessly around the hoop.
(a) Write the Lagrangian in terms of the angle θ of the hoop's diameter from the vertical and the angular displacement ϕ of the bead around the hoop from the point on the hoop opposite the pivot (that is, the point opposite the pivot and the bead make an angle ϕ with the vertex at the center of the hoop).
(b) Find the normal modes and frequencies for small oscillations around the $\theta=\phi=0$ equilibrium. Describe the motion for each normal mode in terms the ratio of amplitudes ϕ / θ. Hint: In this case, I would suggest working at the level of the Lagrangian.

