Intermediate Mechanics PHYS-3202 In-Class Test

Dr. Andrew Frey

24 Feb 2020

Instructions:

- Do not turn over until instructed.
- You will have 50 minutes to complete this test.
- No electronic devices or hardcopy notes are allowed.
- INSTRUCTIONS REGARDING TEST LENGTH WILL GO HERE.
- Answer all questions briefly and completely.
- Only the lined pages of your exam book will be graded. Use the blank pages for scratch work only.

Useful Formulae:

- Lagrangian Mechanics
- Action and Lagrangian

$$
S=\int_{t_{1}}^{t_{f}} d t L(q, \dot{q}, t), \quad L=T-V
$$

- Euler-Lagrange Equations

$$
\frac{\partial L}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=0
$$

- For constraint $f(q, \dot{q}, t)=0$, add Lagrange multiplier term $\Delta L=\lambda f(q, \dot{q}, t)$
- Framework applies to other optimization problems
- Hamiltonian Mechanics
- Canonical Momentum $p_{i}=\partial L / \partial \dot{q}_{i}$
- Hamiltonian as Legendre transform

$$
H(q, p)=\sum_{i} p_{i} \dot{q}_{i}-L(q, \dot{q}) \text { with } \dot{q}_{i} \equiv \dot{q}_{i}(q, p)
$$

- Hamilton's equations $\dot{q}_{i}=\partial H / \partial p_{i}, \dot{p}_{i}=-\partial H / \partial q_{i}$
- Transformation of F generated by G is $\delta F=\{F, G\} \delta \lambda$ with Poisson bracket

$$
\{F, G\} \equiv \sum_{i}\left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}\right)
$$

- Time dependence $d F / d t=\partial F / \partial t+\{F, H\}$
- Generator from Noether's theorem $G=\sum_{i}\left(\partial L / \partial \dot{q}_{i}\right) \delta q_{i}$
- Liouville theorem $d \rho / d t=0$ along phase space trajectory for phase space density ρ
- Virial theorem $\langle T\rangle=-(1 / 2)\left\langle\sum \vec{F} \cdot \vec{x}\right\rangle=(n+1)\langle V\rangle / 2$ for $V \propto r^{n+1}$
- Coupled Harmonic Oscillators
- Lagrangian

$$
L=\sum_{i, j}\left(\frac{1}{2} m_{i j} \dot{q}_{i} \dot{q}_{j}-\frac{1}{2} V_{i j} q_{i} q_{j}\right)
$$

- Generalized eigenvector problem for normal modes $\left(V-m \omega^{2}\right) B=0$ $B=$ normal mode vector, $V, m=$ matrices from Lagrangian
- Normal coordinates $\ddot{\eta}_{n}+\omega_{n}^{2} \eta_{n}=0, L=(1 / 2) \sum_{n}\left(\dot{\eta}_{n}^{2}-\omega_{n}^{2} \eta_{n}^{2}\right)$
- In forced case, determine forcing on each normal coordinate
- Waves on a String
- Normal modes of light string with uniformly spaced identical beads (ends fixed)

$$
y_{j, n}=a \sin \left(\frac{j n \pi}{N+1}\right), \quad \omega_{n}^{2}=\frac{4 F}{m \ell} \sin ^{2}\left(\frac{n \pi}{2(N+1)}\right), \quad n=1,2, \cdots N
$$

- Normal modes of massive string $F=$ tension, $\mu=$ mass density, $y(0, t)=y(L, t)=0$

$$
y_{n}(x)=\sin \left(\frac{n \pi}{L} x\right), \quad \omega_{n}=\frac{n \pi v}{L}, \quad v=\sqrt{F / \mu}
$$

- Wave equation $\ddot{y}-v^{2} y^{\prime \prime}$
* Solution $y=f(x+v t)+g(x-v t)$
* With Dirichlet b.c. at $x=0, L, g(u)=-f(-u), f(u+2 L)=f(u)$
* $y(x, 0)=f_{-}(x), \dot{y}(x, 0)=v f_{+}^{\prime}(x), f_{ \pm}(u)=f(u) \pm f(-u)$
- Phase velocity ω / k, group velocity $d \omega / d k$
- Velocities in Possible General Coordinates
- Cylindrical coordinates $x=\rho \cos \varphi, y=\rho \sin \varphi, z=z, \vec{v}=\dot{\rho} \hat{\rho}+\rho \dot{\varphi} \hat{\varphi}+\dot{z} \hat{z}$
- Spherical polar coordinates $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$ $\vec{v}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}+r \sin \theta \dot{\phi} \hat{\phi}$

